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Coulomb Blockade of Proximity Effect at Large Conductance
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We consider the proximity effect in a normal dot coupled to a bulk superconducting reservoir by the
tunnel contact with large normal conductance. Coulomb interaction in the dot suppresses the proximity
minigap induced in the normal part of the system. We find exact expressions for the thermodynamic and
tunneling minigaps as functions of the junction’s capacitance. The tunneling minigap interpolates
between its proximity-induced value in the regime of weak Coulomb interaction to the Coulomb gap in
the regime of strong interaction. In the intermediate case a nonuniversal two-step structure of the
tunneling density of states is predicted. The charge quantization in the dot is also studied.
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dence remains [7]. The situation changes dramatically accounting for both Coulomb and proximity effects. The
When a normal metal forms a contact with a super-
conductor it acquires some superconductor features. One
of them is the suppression of the electron density of states
(DOS) at the Fermi energy. This effect is governed by the
Andreev processes at the normal-metal-superconductor
(NS) boundary. Cooper pairs tunnel into the normal
metal preserving their phase and thus inducing the super-
conductive correlations. Coulomb repulsion leads to phase
fluctuations and reduces this proximity effect [1]. For a
disordered normal metal, a minigap of the order of the
inverse escape time appears in the excitation spectrum
[2]. Below we study the suppression of the minigap by
Coulomb interaction.

To measure the density of states the tunneling spec-
troscopy technique is widely employed. The conductance
as a function of the voltage between the external probe
and the system under investigation is proportional to the
tunneling density of states (TDOS). Coulomb interaction
affects the TDOS suppressing tunneling conductance at
small voltages. This suppression is known as the zero bias
anomaly [3,4]. The interplay between the zero bias anom-
aly and the proximity effect was first studied in Ref. [5]
for a 2D thin normal film coupled by the tunnel junction
to a superconductor. The renormalization group proce-
dure yields the power-law suppression of the minigap in
the TDOS by the Coulomb interaction.

Coulomb repulsion is ultimately strong in restricted
geometry. In such systems direct observation of charge
quantization is made possible by the Coulomb blockade
effect [6]. When a zero-dimensional (0D) normal grain is
coupled to a normal reservoir by the tunnel junction with
small dimensionless (in units of e2= �h) conductance G, the
equilibrium charge of the grain is a step function of
the gate voltage at zero temperature. Contrary, if G � 1
the charge of the grain is no longer conserved and only
exponentially weak modulation of charge-voltage depen-
0031-9007=04=92(17)=176805(4)$22.50 
if the reservoir is superconducting [8]. Now a single
electron cannot escape into the superconductor and
charge quantization is observed even at large normal
conductance.

In this Letter we consider the 0D NS system described
above. The parameters of the system are assumed to
satisfy the following conditions:

ETh > � � �Eg; EC� � 
: (1)

Here ETh is the Thouless energy, � is the superconductor
gap, 
 is the electron mean level spacing in the grain per
one spin component, Eg � G
=4 is the proximity mini-
gap [2] in the absence of Coulomb repulsion, and EC �
e2=�2C� is the charging energy, with C being the junc-
tion’s capacitance. The dimensionless conductance G is
assumed to be large. We neglect effects of quasiparticle
transport assuming temperature sufficiently low and thus
quasiparticle conductance Gqp � G exp���=T� � 1.

Coulomb interaction modifies the thermodynamic and
tunneling DOS in different ways. The minigap ~EEg in the
thermodynamic DOS is gradually suppressed with the
increase of EC due to enhanced phase fluctuations,
whereas the dependence of the minigap Etun

g in the
TDOS on EC is more complicated. Being suppressed at
weak interaction by phase fluctuations, it eventually
reaches the Coulomb gap EC in the strong interaction
limit. Qualitatively, these two regimes are distinguished
by the relation between the charging energy EC and the
energy EJ � �E2

g=
� log��=Eg�, which is the Josephson
energy of the fictitious system where the normal grain is
replaced by the weak superconductor with the gap Eg.
Below we find the exact dependence of both the DOS
and TDOS on the strength of the interaction for arbi-
trary EC=EJ.

We also study the charge quantization in the grain
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result of Ref. [8] is valid only for EC � EJ. In the opposite case proximity coupling smears the Coulomb staircase
preserving however the sharp discontinuities at half-integer charge.

To investigate the electron properties of the NS system we use the nonlinear � model [9] in the Matsubara
representation. Disorder average is made with the help of a replica trick. Thus the � model is formulated in terms of
the matrix field Q operating in the Nambu-Gor’kov (Pauli matrices �̂�i), energy, and replica spaces. The 0D Coulomb
interaction is decoupled by the electric potential �. The �-model action reads [9]

S�Q;�� � �
�


Tr��"�̂�3 	��Q� �

�G
4

Tr�QSQ� 	
Z

d�
�2

4EC
: (2)

Hereafter we omit replica indices for brevity. We will use �̂�1 for the Q matrix of the superconductor, QS, restricting our
model to the subgap region " � �. The contribution from higher energies leads [10] to the renormalization of the
capacitance C � C	 e2G=�2�� and corresponding renormalization of the charging energy EC.

In the action (2) the matrix Q is linearly coupled to the potential �. This means that Q contains not only soft electron
modes of the system with energies close to the Fermi energy but also the high energy fluctuations corresponding to the
shift of the whole energy band by the electric potential. To get rid of this contribution we make a gauge transformation
proposed in Ref. [11]: Q��0 � ei�̂�3K��� ~QQ��0e�i�̂�3K��0� with K��� �

R
� ����d�. In terms of these new variables the action

has the form:

S� ~QQ;K� � �
�


Tr�"�̂�3 ~QQ� 	

Z
d�

� _KK2

4EC
�

2�Eg



� ~QQ�1�

�� cos2K 	 ~QQ�2�
�� sin2K�

�
; (3)
where the symbols ~QQ�i� � tr��̂�i ~QQ�=2 denote the Nambu-
Gor’kov components of the matrix ~QQ.

The general dynamics governed by the action (3) is
complicated as the variables ~QQ and K are strongly coupled
with each other. Fortunately, in the region of the parame-
ters specified by Eq. (1) the characteristic frequencies of
the variable ~QQ (of the order of the renormalized proxim-
ity gap ~EEg) appear to be much smaller than those of the
variable K. Therefore, it is possible to employ the adia-
batic approximation, integrating first over the ‘‘fast’’
variable K. The resulting effective action S� ~QQ� for the
‘‘slow’’ variable ~QQ should then be subject to the saddle-
point approximation (SPA). Fluctuations of the Q matrix
describe the effects of level statistics, therefore the SPA
works fine if the relevant energy scale ~EEg exceeds 
. Such
a condition is definitely satisfied in the regime of weak
Coulomb repulsion: Eg=
 � G=4 � 1. Below we will
find the applicability range of both the adiabatic and the
saddle-point approximations at arbitrary strength of the
Coulomb interaction.

The action averaged over K is obviously uniform in
time that allows one to assume the stationary saddle point

~QQ""0 � 2�
�"� "0���̂�3 cos��"� 	 �̂�1 sin��"��; (4)

parametrized by the single function ��"�. The possibility
to choose ~QQ in the form (4) without the �̂�2 term is related
to the zero mode with respect to K � K 	 const.

Substituting the ansatz (4) into the action (3) we find
the imaginary time evolution for K. It is determined by
the simple Hamiltonian

ĤH � EC��@2=@K2 � 2q cos2K�: (5)

The parameter q � �Eg=2EC
�
R
�
�� d" sin��"� measur-

ing the relative strength of the proximity coupling with
respect to Coulomb interaction is to be determined self-
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consistently later on. The 2�-periodic boundary condi-
tions for K are implied.

At zero temperature the dynamics of K��� is frozen at
the ground state of (5). The ground state energy can be
expressed in terms of the zeroth Mathieu characteristic
value a0�q�: E0 � ECa0�q�. After averaging over K one
obtains the effective action for ~QQ:

S� ~QQ� �
Z

d�
�
�

1




Z
d"" cos��"� 	 E0�q�

�
: (6)

Minimizing this expression we find the BCS-like solution
��"� � arctan� ~EEg="�. The renormalized value of the
minigap ~EEg satisfies the following system of equations:

~EEg

Eg
� �

1

2EC

@E0

@q
; q �

Eg
~EEg

EC

log

2�
~EEg

: (7)

The dependence of the ground state energy E0 on q is
especially simple in two limiting cases. If the Coulomb
interaction is weak the parameter q is large and we can
estimate the potential energy in Eq. (5) by the oscillator
potential. This gives a small correction to the bare mini-
gap value Eg:

~EE g � Eg �
1

2

�������������������������
EC


log�2�=Eg�

s
; q � 1: (8)

In this regime the variable K has the frequency EC
���
q

p

which is
������������
EC=


p
times larger than Eg. In the opposite

limit of strong Coulomb interaction the potential in
Eq. (5) can be treated perturbatively yielding a0�q� �
�q2=2. The minigap appears to be exponentially small
in EC:

~EE g � 2� exp

�
�
2EC


E2
g

	
; q � 1: (9)
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At the same time, the frequency of K is EC � ~EEg, ensur-
ing the validity of the adiabatic approximation.

The whole dependence of ~EEg on EC is shown in Fig. 1.
The thermodynamic DOS itself is just the conventional
BCS density of states with the gap ~EEg.

Now we turn to the tunneling density of states. In the
�-model formalism the TDOS is the analytic continuation
of the function

��"� �
1




Z
d�ei"�trh�̂�3ei�̂�3K ~QQe�i�̂�3Ki�;0 (10)

from positive Matsubara energies " to real energies E. The
angular brackets imply averaging with the action (3). In
the adiabatic approximation this means averaging over
K with the Hamiltonian (5) and substitution ~QQ ! ~QQ.
The result for the TDOS is the convolution of the ther-
modynamic DOS with the phase correlator C��� �
hei�K����K�0��i given by

C�!� �
X
n

jh0jeiKjnij2
2�En � E0�

�En � E0�
2 	!2 (11)

in the frequency representation at zero temperature. Here
En are the energy levels of the Hamiltonian (5). The
matrix elements in Eq. (11) are nonzero only for n �
4k	 1 and n � 4k	 2. Evaluating the convolution of
the thermodynamic DOS with C�!� and performing ana-
lytic continuation, we obtain for the TDOS

��E� �
2




X
n

jh0jeiKjnij2
jxnj "�jxnj � ~EEg������������������

x2n � ~EE2
g

q ; (12)

where xn � E� �En � E0�. The tunneling minigap asso-
ciated with the n � 1 term is given by

Etun
g � ~EEg 	 E1 � E0: (13)

Figure 2 shows its dependence on EC which interpolates
from the proximity gap (8) in the weak interaction regime
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FIG. 1. The minigap in the thermodynamic DOS as a func-
tion of the Coulomb energy EC. Dashed lines illustrate the
asymptotic behaviors (8) and (9). The crossover from weak to
strong fluctuations regime occurs at EC
=E2

g � log��=Eg�=2.
This figure shows the case log��=Eg� � 5.
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to the Coulomb gap EC at large EC. Note the reentrant
behavior of Etun

g as a function of EC at small EC.
The form of the TDOS depends on the strength of the

Coulomb interaction. Because of the fast decrease of the
matrix element jh0jeiKjnij2 with n only the first two terms
may significantly contribute to the sum in Eq. (12). In the
weak Coulomb interaction regime (q � 1), the n � 1
contribution dominates. Since the level splitting E1 �
E0 is exponentially small the TDOS coincides with
the thermodynamic DOS in this limit. When the
Coulomb interaction is strong (q � 1), the matrix ele-
ments jh0jeiKj1ij2 � jh0jeiKj2ij2 � 1=2 and ��E� �
�2=
� "�jEj � EC�. In the intermediate regime (q� 1)
the TDOS acquires a nonuniversal two-step structure,
being zero for E< Etun

g , of the order of jh0jeiKj1ij2 for
Etun
g < E< ~EEg 	 E2 � E0, and close to 1 for E > ~EEg 	

E2 � E0; see the inset of Fig. 2. The BCS-type singular-
ities are still present at the step edges but they are rela-
tively weak.

At nonzero temperature all the above results are still
valid provided T � ~EEg. If the temperature is higher all
integrations over energies should be replaced by summa-
tions over Matsubara frequencies. Moreover, the phase K
is not frozen at the ground state in this case, and the
temperature dependent free energy should be used instead
of the ground state energy in Eq. (6) and below. These
calculations show that the true tunneling minigap van-
ishes when the temperature is of the order of ~EEg�T � 0�.

Now we briefly comment on the validity of our ap-
proach. The above results were obtained using the adia-
batic approximation for the integral over K and the
saddle-point approximation for ~QQ. To justify this ap-
proach one can calculate the first fluctuation correction
to the TDOS. To this end we parametrize ~QQ in the
standard way in terms of the matrix W, and average
over K with the Hamiltonian (5) taking into account W
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FIG. 2. The minigap in the tunneling DOS as a function of
the Coulomb energy. For small EC it follows ~EEg given by Eq. (8).
In the opposite limit Etun

g � EC. This figure is plotted assuming
log��=Eg� � 5 and G � 40. Inset: two-step tunneling density
of states in the intermediate regime. The charging energy is
such that EC
=E

2
g � 2:8 (as shown by the dot on the main

graph) which corresponds to q � 0:95.
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FIG. 3. The dependence of the thermodynamic minigap, the
tunneling minigap, and the average charge on the gate voltage
V (vertical axis) at three different values of Coulomb energy.
The parameters are G � 40, log��=Eg� � 5.
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perturbatively. As a result we end up with the quadratic
action for the fluctuating W. Evaluating the first order
perturbative correction to the density of states we find
that it is small provided that EC � 
 (adiabaticity con-
dition) and ~EEg � 
 (validity of the SPA). All the above
results were obtained in the lowest-order approximation
over tunneling probability T across the NS interface. The
effect of higher-order terms can be neglected if Andreev
conductance through this interface is small, GA � 1.

Finally, we consider the case of a nonzero gate voltage
V applied to the normal grain in the standard Coulomb
blockade setup [8]. If the grain is coupled to the gate by
the capacitance Cg the charging energy [6] becomes
EC�Q̂Q=e� N�2, where Q̂Q is the charge operator of the
grain, eN � CgV is the equilibrium charge, and we re-
defined EC � e2=2�C	 Cg�. The Hamiltonian for K is
changed to

ĤH � EC���i@=@K � N�2 � 2q cos2K�: (14)

The energy spectrum of this Hamiltonian has the stan-
dard band structure. The boundary conditions pick out
two energy levels from each band with the quasimomen-
tum determined by the gate potential. When the equilib-
rium charge N approaches half-integer values these two
energy levels cross. Since all physical quantities depend
periodically on N, in what follows we assume jNj< 1=2.

In the weak Coulomb interaction regime, EC � EJ, the
lowest energy band is exponentially narrow. The lowest
level of the Hamiltonian depends weakly on N, and all
the results for the DOS and TDOS obtained above are left
unchanged. For strong Coulomb interaction we calculate
the ground state energy perturbatively in small q.
Neglecting the q term we have E�0�

n � EC�n� N�2. The
second order in the q correction to the ground state energy
E�2�
0 � �ECq

2=2�1� N2�. From the self-consistency
Eqs. (7) we find the thermodynamic minigap ~EEg �
176805-4
2� exp���2EC
=E
2
g��1� N2��. The minigap in the

TDOS is determined by Eq. (13) yielding Etun
g � ~EEg 	

EC�1� 2jNj�. This quantity depends strongly on N de-
creasing to the exponentially small value ~EEg at N � 1=2.
These results are illustrated in Fig. 3.

The average charge of the grain is Q � eN � @E0=@V.
In the limit of strong Coulomb interaction the result of [8]
is reproduced. In the opposite limit the Coulomb staircase
is smeared up to an exponentially weak modulation. Em-
ploying the tight binding approximation for the Hamil-
tonian (14) we get Q=e � N � Cg=�C	 Cg�8

�������
2�

p
q3=4 �

e�4
��
q

p
sin��N�. The small steps of the height Cg=

�C	 Cg�16
�������
2�

p
q3=4e�4

��
q

p
at half-integer charge are still

present as predicted in Ref. [8]. This feature is the con-
sequence of the double-electron charge transport through
the junction. The Coulomb staircase is shown in the right
panel of Fig. 3.

In conclusion, we have shown that interplay between
proximity and charging effects in a superconductor-
normal grain tunnel junction with large normal conduc-
tance G is governed by the ratio of the charging
energy EC to the fictitious Josephson energy EJ �
G2
 log��=G
�. DOS and TDOS are calculated as func-
tions of EC=EJ and the gate voltage V. An unusual two-
step shape of the TDOS is found at EC � EJ.
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