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Theory for Explosive Ideal Magnetohydrodynamic Instabilities in Plasmas

H. R. Wilson
EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom

S.C. Cowley™

Department of Physics, Imperial College, Prince Consort Road, London SW7 2BZ, United Kingdom
(Received 22 October 2003; published 29 April 2004)

Flux tubes confined in tokamaks are observed to erupt explosively in some plasma disruptions and
edge localized modes. Similar eruptions occur in astrophysical plasmas, for example, in solar flares and
magnetospheric substorms. A single unifying nonlinear evolution equation describing such behavior in
both astrophysical and tokamak plasmas is derived. This theory predicts that flux tubes rise explosively,
narrow, and twist to pass through overlying magnetic field lines without reconnection.
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There are numerous examples of explosive instabilities
in plasmas, both astrophysical (e.g., solar flares and
prominence eruptions [1,2] and magnetospheric sub-
storms [3]) and laboratory (e.g., disruptions [4] and
edge localized modes, or ELMs, [5,6] in tokamaks).
There is strong evidence that at least some of these events
are triggered by eruptions of flux tubes through the
plasma (see, for example, [7-10]). Because these systems
are evolving slowly through the stability threshold (prior
to the event), it is difficult to explain fast growth without
nonlinearity. In this Letter we develop a nonlinear ideal
magnetohydrodynamic (MHD) theory of explosive flux
tube eruptions in a tokamak that is close to the linear
stability threshold. We extend the original work of
Hurricane et al [11], which was applied to solar flares
[12] and magnetospheric substorms [13], to include key
aspects of toroidal geometry. The astrophysical and labo-
ratory phenomena are then found to be governed by a
single, unifying one parameter nonlinear equation.
Solutions are qualitatively independent of this parame-
ter—specifically all flux tubes rise explosively, narrow,
and twist as they pass through the overlying plasma. We
therefore predict flux tube eruptions in all situations to be
similar and may be driven by the same basic mechanism.
As well as being of basic scientific interest, this is of
extreme practical importance, as large ELMs and disrup-
tions may, if not avoided, cause structural damage in
planned burning plasma tokamaks.

The instability on which we focus is called the MHD
ballooning mode (see [14], for example), which is driven
unstable in a plasma when the pressure gradient exceeds a
critical value. Let us review the features of the linear
theory, which is helpful for understanding the nonlinear
theory. The most unstable modes have a high toroidal
mode number, 7, and therefore a short wavelength per-
pendicular to the field line in the flux surface, ~a/n
where a is the minor radius of the tokamak plasma. On
the other hand, to minimize field line bending, the wave-
length of the perturbation along the field line is very long,
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comparable with the equilibrium plasma scale lengths. To
describe such structures and yet satisfy the necessary
periodicity constraints, the equations are solved on an
extended poloidal angle () domain [ —0o, oo] from which
periodic solutions are constructed [14]. To leading order
in 1/n'/2 one obtains the ballooning equation that deter-
mines the mode structure along, but not across, the field
line. The growth rate is an eigenvalue of this equation. At
higher order, O(n~!), one finds that the radial mode
structure spans a distance ~a/n'/? [14].

Let us consider some of the properties of the ‘““balloon-
ing” equation close to marginal stability, i.e., when the
growth rate y (normalized to the Alfvén frequency) is
small. Inertia can be neglected at distances along the field
line, such that |y#| < 1 (we call this the ‘‘ideal region”).
For 1 < |0| < 1/, the “radial” displacement, £,, has

the form [14]
1 A,
I — A ). 1

i £ *(IHIAL |0|As> &

A. and A, are constants and = indicates the sign of 6.
The fractional indices are the Mercier indices, Ay ¢ =
1/2 ¥./1/4 — D,;, where D, is the well-known
Mercier coefficient and is a property of the equilibrium,
particularly the shape. For typical tokamak situations,
away from the core, Dy; <0, sothat A = Ag — A; > 1.
Inertia cannot be neglected in the regions y = 1 and
v0 = —1. The form of the ballooning equation in these
“inertial regions” indicates that the solution must be a
function only of the variable v = y6—i.e., £, = £,(v).
However, for |yf| << 1 it must match the ideal region
solution from Eq. (1). Thus, it must have the form

" 1 b
lim &, = Ai< + = ) )
ylol—o" " (yloD* — (yloD*s

Solving the inertial region equations with the boundary
condition that £, — 0 at § = oo, the numbers b. are
obtained [15]. Because the inertial region equations are
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symmetric, b, = b_ = b. Matching the solutions in The Lagrangian plasma displacement is

Egs. (1) and (2) yields A’, = A” = A’, which can then

be determined entirely from the ideal region. In addition, € = &yel + Eaen + By, o)
the matching determines the growth rate: (A/)"! = 6 =

where e, = Va X b, and e, = by X Vb with b, =
B,/B,. Anticipating cancellation in V - §, we order &) ~
&, and &, ~ €£,. An absolute ordering of &, ~ €? and

(y*)/b. There is a subtlety here. Close to marginal stabil-
ity 6 is small and, if we were to retain inertia in the ideal
region, this would lead to a correction, which is O(y?).

Then we would obtain a/dt ~ €*/* is chosen so as to introduce nonlinearity and

time evolution in the equation determining the perpen-

5o + 8,172 = LA 3) dicular mode structure. With this ordering & - V <« 1, and

0 : b so we avoid shocks. We apply this ordering to the
Lagrangian MHD force balance equation [11].

Our first task is to calculate the nonlinear A’ from
the ideal region. We find that the perturbation is incom-
pressible to three orders of €. From the second order force
equation in the e direction we obtain

&9 = &, a, NH(0), (6)

Equation (3) is a key result in defining our formalism.
Consider first the tokamak situation in which the shaping
of the cross section is not too strong, so that A < 2. Then
the term in 8,79* can be neglected, and inertia can be
ignored when calculating A’ from the ideal region.
Matching this A’ to (causal) solutions in the inertial
region determines the growth. In the opposite case,
when A > 2, the term in 8,79 is the dominant inertial
correction, and the effect of the inertial region can be
neglected. In this situation one could apply line-tied
boundary conditions at [#] > 1 and retain inertia in the

where a superfix on perturbed quantities indicates the
order in €, e.g., &, = Z]e’f . The variation along the
field H is determined from the ballooning equation:

ideal region. This is then equivalent to the ballooning le, |?
mode analysis in [11]. BB, - VO[ [B - vO(BOH)]}
Let us now turn to the nonlinear theory in the situation
when A < 2, which is the main purpose of this Letter. We 32 (e 1 - Kko)e - Vopo)H =0, @)
0

shall find that our nonlinear mode is localized about a
particular field line so that periodicity is not important
provided that the perturbed region does not close on
itself, but wraps many times around the torus. Thus, we
ignore the periodicity constraint and the extended angle,
6, is then reinterpreted as a measure of the distance along
an infinitely long field line. The calculation in the ideal
region then broadly follows that of [11], but differs in a
number of crucial ways. To make analytic progress, it is

necessary to 1dent1.fy a small parameter so that we can point to note is that the equilibrium is invariant under the
develop an expansion procedure to solve the full, non- - . .

i ideal MHD i Th 1 . transformation @ — a + f(¢), and, making this trans-
inear idea equations. The small parameter we 0 ovion we find u = w(df/dw).

employ, €, is a measure of the localization of the mode
perpendicular to the magnetic field line. We use the co-
ordinates, 0, ¢, the poloidal magnetic flux, and «, an
angular coordinate perpendicular to the equilibrium
magnetic field such that By = Vi X Va. Derivatives of
perturbed quantities with respect to these coordinates are
ordered:

where k) = By - VB, and p, is the pressure. We have
inserted a fictitious eigenvalue, w, to provide a well
defined system to solve for H with boundary conditions
H— 0 as § — *oo. If we were precisely at marginal
stability, then w = 1. In general, we are interested in
situations that are only just unstable, in which case w is
slightly less than 1. To compensate, a correction ~(1 —
) is reintroduced in the higher order equations. A final

We now proceed to the higher order equations to de-
termine an equation for the envelope function f and f' =
df/dis. At third order we determine the small compressi-
bility and are forced to choose f’ to minimize u. We
obtain our nonlinear equation from the fourth order curl
of the perpendicular force balance, which involves £%.
One solubility condition for £€4 is obtained by multi-

ad o d _1 ad 5 plying this equation by H and integrating out to large
90 | o € W | o da |4, : distance 1 < |0 < y~! along the field line. After ap-
) propriate integrations by parts and substantial algebra the

£¥ terms are reduced to a boundary value term that is
Note that this ordering reflects the linear mode structure,  proportional to (A’)~!. The result is our final equation for
in which case we could identify € ~ n=1/2. A’ in the ideal region. It takes the relatively simple form
| for up-down symmetric equilibria:

(A% +A2) Pu  u 9’u 9 [(du\2 0’u 9% [du\2?
= 20— p)— ——— — |+C—| [— | |+C— —(— .
A’(a, Y, 1) A Cl[ ( 2 da>  of? 8¢2:| ¢ 8a[<8a> } Ca da? 8¢2<8a> ®)
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We have replaced f = du/da, and the overbar denotes an
integral of the quantity over the « variable from —oo to
+o0. The coefficients, C;, represent averages along the
field line (to infinity) involving the function H, which are
similar to those given in Hurricane et al.; details will be
given in a future paper.

We leave interpretation of the various terms in this
equation until after we have addressed the solution in
the inertial region. The radial component of the displace-
ment at the low y6 end of this region scales as £ e, ~
6'~As. Thus, provided Ag > 1 (i.e., D), < 0), the displace-
ment and the nonlinearities are small in the inertial
region. For Ag¢ = 1 nonlinearities are important along
the full length of the field line, including the inertial
region. This reveals itself in our analysis in the divergence
of the coefficient C, for Ag = 1. Typically this happens
only near the center of a tokamak. Thus, for tokamak
disruptions or ELMs, we restrict consideration to Ag > 1.

The equations describing the evolution in the inertial
region are therefore a pair of linear, coupled differential

92 92 9%u

L
a2 da*Jo (1 — 1)}

Equation (10) describes the early nonlinear evolution of
tokamak plasmas in most situations (i.e., 1 < A <2).The
term on the left-hand side is the formal representation of a
fractional derivative and in the limit A — 2 it matches
smoothly onto the second derivative (in #). For A > 2 we
must use the equation derived in Hurricane et al [11]
where the time integral in the brackets on the left-hand
side of Eq. (10) is replaced with u(a, ¥, 1).

Let us now consider the various drive terms. The first
two terms on the right-hand side are standard linear
terms. The first represents the linear drive for the unstable
flux tube and close to linear marginal stability is positive
(unstable) in a narrow region of . The second represents
the stabilizing terms that come from pushing aside flux
tubes to allow the exploding tube through (it is smaller
the narrower the tube in «). For small amplitude the
displacement is confined to the narrow linearly unstable
region [14]. The term that is quadratic in u is the main
nonlinear drive for the instability, and represents a weak-
ening of the field line bending of expanding flux tubes.
Balancing this against the inertia provides an estimate for
&€ (=0u/da) in the nonlinear evolution phase:

1

io(c ) — 11° (n

Ela, 1) ~

The time t, depends on the initial conditions. It is inter-
esting to note that this exhibits explosive growth as t —
tp, and matches smoothly onto the line-tied result [16] as
A — 2. Since the peak of the displacement (at the mini-
mum of #y) in Eq. (11) grows fastest, this nonlinearity
tends to narrow the mode. The cubic nonlinearity repre-
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equations for the radial perturbation and V - § (plasma
compressibility must be retained). These equations are
solved using a Laplace transform in time. This is similar
to the linear procedure, with the Laplace transform vari-
able p replacing the linear growth rate, y. The expression
(2) with y — p and A = A(p) (and b known) holds in the
matching region. Inverting the Laplace transform and
matching the powers of # in the asymptotic form,
Eq. (1), of the ideal region yields the expression

} )

where I' = I'(2 — A). Equation (9) is valid over the full
regime of relevance, 1 < A < 2.

All that remains is to match the expressions for A/,
which we have obtained in the two regions. Thus, com-
bining Eqgs. (8) and (9), and normalizing variables appro-
priately, we derive a nonlinear evolution equation that
depends only on D,:

o 9’u

I%W%”zifiﬁ{fwa“%ﬁ
A da bT a2 dal )y = (t— 1)1

9u 92

du \2

sents the flattening of the pressure in the vicinity of the
mode. This term does not significantly affect the explo-
sive nature of the instability, but does influence the radial
mode structure. Note that it is negative (stabilizing)
around the region of maximum linear instability, but
positive (destabilizing) at larger radial distances from
the mode. Thus, this term simply acts to make the mode
more radially extended than linear theory would predict.
Balancing the two nonlinear terms, we find that
(Ap)?/(Aa) ~ & ~ (ty — 1)~ * where Aa and Ay are the
flux tube width and the radial extent, respectively. Thus,
the competition between the quadratic and cubic nonline-
arities leads to a narrowing in « and a broadening (be-
yond the linearly unstable region) in .

We solve Eq. (10) numerically for A = 1.6. In the linear
regime the displacement grows exponentially in the lin-
early unstable region. At larger amplitude the displace-
ment grows explosively as (f, — 1)~ "7 with t, = 10.5, i.e.,
broadly consistent with that given by Eq. (11). In Fig. 1(a)
we show the evolution of the instantaneous growth rate
and the width A«. In Fig. 1(b) we show a picture of the
perturbed flux surfaces at time ~10—the exploding flux
tube exhibits itself as a narrowing finger. Of course, the
orderings assumed in deriving Eq. (10) break down close
to the singularity. Nevertheless, the calculation does
demonstrate that the ballooning mode grows very much
faster than linear theory would predict close to marginal
stability.

In conclusion, we have extended the theory of non-
linear ballooning instabilities to the case of plasma sys-
tems with toroidal symmetry, such as tokamaks. In doing
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FIG. 1

(b)

(a) Plots of the inverse of the instantaneous growth rate, y(¢) (full curve), and the width A« of the perturbation (dashed

curve) as a function of time. (b) Plot of constant flux surface contours in the plane of minor radius, r, and a.

so, we have identified three different regimes:
(1) Dy, < —3/4, the displacement is not extended far
along the field line, and the theory developed by
Hurricane et al. [11] is appropriate; (2) 0 > Dy, > —3/4,
nonlinearities are important at small distances along field
lines while inertia is important only at large distances
and the theory developed here is appropriate; (3) Dy, > 0,
both nonlinearities and inertia are important at large
distances along the field lines—this theory is not yet
developed. In most tokamak discharges D, is positive
in a small central region and the condition 0 > D;, >
—3/4 holds over most of the flux surfaces: Dy, < —3/4is
usually associated with strong triangular shaping.

In a tokamak, the theory predicts that the ballooning
instability will eject a flux tube of hot plasma into the
colder edge plasma region, the so-called scrape-off layer.
This flux tube is connected back to the hot plasma. Heat
flow along this tube could provide a mechanism for the
rapid heat loss observed in both the ELM and the dis-
ruption. The actual mechanism by which the heat and
particles leave the hot plasma flux tube and enter the
scrape-off layer is not determined by the ideal MHD
theory presented here, and is the subject of future re-
search. It is interesting to note that, like inertia, nonideal
MHD physics is usually important only far along the field
line. Therefore our calculation of the effects of the non-
linearities on A’ is likely to be useful for a wide range of
nonideal MHD models. We have presented a theory that
provides a unified description of flux tube eruptions in
laboratory and astrophysical plasmas. Much work is
needed to tie the theory to actual observations.
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