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We present a novel method for the calculation of the energy density of states D�E� for systems
described by classical statistical mechanics. The method builds on an extension of a recently proposed
strategy that allows the free-energy profile of a canonical system to be recovered within a preassigned
accuracy [A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. 99, 12562 (2002)]. The method
allows a good control over the error on the recovered system entropy. This fact is exploited to obtain
D�E� more efficiently by combining measurements at different temperatures. The accuracy and
efficiency of the method are tested for the two-dimensional Ising model (up to size 50� 50) by
comparison with both exact results and previous studies. This method is a general one and should be
applicable to more realistic model systems.
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ample scope for alternative approaches that could provide
improved efficiency and better error control. Here we

in the free-energy surface and, in the limit of a long
metadynamics F�E� � FG�E� tends to become flat as a
It has long been recognized that all energy-related
thermodynamic properties of a classical canonical system
can be calculated once the energy density of states D�E� is
known. In fact, starting from the partition function Z �R
dED�E�e��E, quantities such as free energies, specific

heats, and phase transition temperatures can be computed
in a straightforward manner. In principle, all canonical
averages can be calculated through a multidimensional
density of states. Because of this central role in equilib-
rium thermodynamics a variety of theoretical and
computations studies have addressed the problem of
how to obtain D�E� [or, equivalently, the entropy profile
S�E� � ln�D�E�� ] in a reliable and efficient way.

In principle, D�E� could be calculated from the
histogram of the energies visited during a single ‘‘very
long’’ constant-temperature simulation [1]. In practice,
for any finite simulation only a limited energy window
is sampled so that the recovery of the system thermody-
namics over a wide temperature range is unfeasible.

Several alternative strategies have been developed to
remedy this shortcoming. For example the multiple-
histogram reweighting technique relies on performing
several simulations at different temperatures, so as to
explore different (overlapping) energy intervals [2]. The
various histograms are then optimally combined to ob-
tain D�E� over the union of the energy intervals. Another
successful family of techniques aims at obtaining D�E�
by changing iteratively the probability with which the
various energy levels are visited in stochastic dynamics
until the recorded energy histogram is ‘‘flat.’’ Such meth-
ods include entropic sampling [3], multicanonical and
broad-histogram techniques [4,5], and also the recent
method of Wang and Landau [6].

These and similar techniques have proved to be very
valuable in a variety of contexts [7–9], but there is still
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propose to modify and extend the metadynamics method
recently introduced by two of us [10] for evaluating D�E�.
The algorithm we introduce allows a good error control
on the explored energy range. Moreover, although within
our approach D�E� could be reconstructed performing
simulations at virtually any temperature, it is still pos-
sible to exploit the Boltzmann bias to focalize the com-
putational effort for exploring the region of phase space of
relevance for a temperature of interest (e.g., of a phase
transition). In the following we will first describe this
general strategy followed by its application to the typical
reference case constituted by the two-dimensional
Ising model.

The essence of the metadynamics approach is first to
identify those relevant collective variables (CVs) that are
difficult to sample. In other applications [10] a similar
metodology was applied in order to observe a specific
transition (e.g., a chemical reaction) in systems described
by a complex atomistic Hamiltonian. At this scope CVs
explicitly depending on the microscopic configuration of
the system have been employed, such as, e.g., coordina-
tion numbers or distances between specific atoms of the
system. Here, we aim at reconstructing the canonical
free-energy profile, F�E� � E� T S�E� and the relevant
variable is E (which is also an explicit function of the
microscopic configuration of the system). At each meta-
dynamics step the system evolution is guided by the
generalized force which combines the action of the ther-
modynamic force (which would trap the system in free-
energy minima) dF�E�=dE and a history-dependent one
which disfavors system configurations already visited.
The history-dependent potential, FG, is constructed as a
sum of Gaussians of width �E and height w centered
around each value of E already explored during the dy-
namics. As shown in Ref. [10], FG fills in time the minima
2004 The American Physical Society 170601-1
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FIG. 1 (color). Example of reconstruction of a preassigned
(analytic) free-energy profile (black curve), F�E�, by means of
metadynamics runs consisting of 200 Gaussians of spread
�E � 0:4 and height w � 0:16. To mimic the uncertainty on
the thermodynamic force encountered in stochastic simula-
tions, a Gaussian noise of width 0.3 was added to F0�E�. The
broken red and indigo lines denote the filled profile, �F�E� �
F�E� � FR�E�, obtained, respectively, with an unsmoothed
(�c � 0) and smoothed (�c � 100) metadynamics. Notice the
shorter correlation lengths and smaller amplitudes of the
fluctuations in the second case. The average and dispersion of
�F�E� were calculated (blue and brown lines wth error bars)
for 1000 independent runs, revealing both the absence of biases
in FR�E� and the constancy of the error except close to the
boundaries. By changing w and modifying the number of
Gaussians so as to work at a constant filled free-energy volume,
we calculated over the range jEj< 2:5 the average, maximum,
and minimum values of �F�E� measured over 1000 runs; see
inset. The linear dependence of the error on FR is thus apparent
both for the unsmoothed and smoothed metadynamics (red and
blue, respectively).
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function of E and hence �FG�E� becomes an approximant
of F�E�.

Clearly, the exact form of the metadynamics equations
and the choice of the parameters w and �E may affect
significantly the accuracy of this estimate. Furthermore
careful control of the error is essential for reconstructing
a reliable density of states. This requires that the algo-
rithm in Ref. [10] be substantially improved. The modi-
fied metadynamics equations are the following:

Et�1
G � Et ��E

f�Et�

jf�Et�j
; (1)

Et�1 � Et ��E
�
1�

�
2

�
f�Et�

jf�Et�j
; (2)

where � is a random number between 0 and 1. The
generalized force f�E� is given by f�E� � ��@=@E� �
�F�E� � Ft

G�E�� with the history-dependent potential,
Ft
G, defined as

Ft
G�E� �

X
u
t

w e��E�Eu
G�

2=2�E2
: (3)

By displacing the center of the Gaussian Et�1
G with re-

spect to the point of evaluation of the generalized force
[Eq. (1)], the added Gaussian maximally compensates
f�Et� and flattens F� FG around Et. The energy step
performed at every metadynamics iteration is chosen
randomly in the interval between �E and 1:5�E
[Eq. (2)] in order to reduce the correlation induced by
the dynamics.

Finally, in order to further reduce the spatial correla-
tions in FG, we notice that when the metadynamics is
terminated, say, at position Et, FG will present a bump in
a region around Et whose spread depends on the correla-
tion time of the metadynamics. This effect can be less-
ened if the contributions of the Gaussians placed at
the end of the dynamics are weighted less. Therefore,
after the metadynamics with constant w is terminated
we reconstruct the free-energy from FR�E� �
�
P

u
tw tanh��t� u�=�c��e��E�Eu�2=2�E2
where �c is

taken to be larger than the typical time required to sweep
the ‘‘filled’’ energy range. Other smoothing functions,
such as min�1; �t� u�=�c� can, of course, also be chosen
and have an analogous effect.

The modified metadynamics algorithm allows the effi-
cient reconstruction of F�E� in the explored energy range,
within an error that is ultimately controlled only by the
Gaussian’s height w. We demonstrate the quality of the
algorithm by reconstructing an ‘‘ideal,’’ preassigned,
F�E� (see Fig. 1). If the method is void of systematic
biases one would expect the quantity �F�E� � FR�E� �
F�E� to be, on average, constant throughout the filled
energy range. Moreover, we would expect deviations from
the constant average value to be of the order of w. These
properties are confirmed by the results presented in the
inset of Fig. 1, where the uniformity of the average value
of �F�E� is apparent, together with the constancy of its
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dispersion, �2�E� � h�F�E�2i � h�F�E�i2. The plots also
illustrate the benefits of the ‘‘smoothing’’ procedure over
the last part of the metadynamics trajectory, since this
results in a decrease of the spread of �F�E�. As is visible
in the inset of Fig. 1, the dispersion is further confirmed to
be approximately proportional to w. An important fact is
that near the boundaries of the explored energy interval
FR�E� decays to zero and hence deviates from the true
free energy. To identify the interval over which FR is
reliable we need to ascertain if the number of Gaussians
accumulated at a given energy E, � jFR�E�=wj, is signifi-
cantly larger than the minimal number of superposed
Gaussians needed to produce the observed free-energy
derivative, � F0�E�=�w=�E�. In this work we have re-
quired that the ratio of the former to the latter be greater
than 5.

We now use the algorithm described above to compute
D�E� for an N � N two-dimensional Ising model with
170601-2
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ferromagnetic nearest-neighbor interactions and periodic
boundary conditions [11]. In fact, exact expressions for
S�E� are available [12] and the error induced by the
algorithm can be explicitly estimated and comparison
with other approaches can be made [6].

Virtually the entire computational effort of the meta-
dynamics is spent in estimating the thermodynamic
forces @F=@E at each energy value, �EE, visited by the
metadynamics. To respect the discrete nature of the sys-
tem’s energy spectrum, the continuous value of Et pro-
duced by Eq. (2) was discretized to the nearest energy
level. Because of the discreteness of the energy spectrum,
the thermodynamic force in �EE cannot be estimated by the
Lagrange-multipliers technique described in Ref. [10],
and is rather obtained using a centered difference ap-
proach. If p1 and p2 are the occupation probabilities of
the two energy levels, E1 and E2 adjacent to �EE (we assume
j �EE� E1j � j �EE� E2j), we have

@F
@E

�������E� �EE
�

T
�E2 � E1�

ln
p1

p2
: (4)

p1 and p2 are evaluated with an umbrella-sampling strat-
egy consisting of a Monte Carlo (MC) evolution of the
system (Metropolis acceptance/rejection of single-spin
flips) under the action of an effective Hamiltonian ob-
tained by adding to the energy of a given spin configura-
tion, E, the term 1=2K�E� �EE�2. A suitable choice of the
parameter K forces the system to explore the energy
region around �EE thus populating appreciably both levels
E1 and E2. The symmetry with respect to �EE of the added
umbrella potential allows to calculate the thermody-
namic force through the same Eq. (4) with p1 and p2

being the fraction of times that the corresponding energy
levels are encountered in n statistically independent con-
figurations picked with the modified canonical weight.
For this purpose the MC trajectory was sampled at inter-
vals comparable to the autocorrelation time after having
discarded a few tens of initial system sweeps. The MC
sampling was stopped when the estimated uncertainty on
the force [13] was equal to the maximum force intro-
duced by a single Gaussian, w exp��1=2�=�E. This
choice ensures that, for large values of t, f� �EE� is of the
order of w=�E. If the force is calculated with much
greater accuracy the repeated superposition of the
Gaussians would still lead to an uncertainty of order
w=�E on f� �EE�.

By means of such a metadynamics it is therefore pos-
sible to reconstruct the free-energy profile, FR�E; T�. An
estimator for the system entropy is given by SR�E� �
�E� FR�E; T��=T. The uncertainty over FR�E; T� is in-
herited by SR�E� whose a priori dispersion is thus of the
order w=T. Thus, the expected error on the entropy profile
is constant. This represents a major difference over stan-
dard reweighting techniques, where the accuracy on the
calculated entropy usually deteriorates as one moves
away from the free-energy minima.
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If the goal is to reconstruct S�E� over a wide range of
energy, it seems natural to combine the outcome of sev-
eral metadynamics at various temperatures, in analogy
with multiple-histogram techniques [2]. In the following
we shall indicate with SR;i the entropy reconstructed in
the ith metadynamics carried out at temperature Ti and
with Gaussians of height wi and width �i. Because of the
temperature dependence of the free energy, each run will
typically explore a different energy range. The data ob-
tained in the different metadynamics runs can be opti-
mally combined to provide a single entropy estimate, ~SS,
over the union of the explored regions [2]. To do so we
recall that the entropy SR;i is known only up to an additive
constant ci and that the uncertainty on SR;i is �i � wi=Ti
throughout the reliably explored energy range.

This leads us naturally to consider a maximum like-
lihood approach to obtain ~SS and the additive constants by
minimizing the least-squares function,

L �~SS; c1; :::cn� �
X
i�1;n

X
E

j~SS�E� � SR;i�E� � cij2

�2i
; (5)

where the first sum is carried over the various metady-
namics runs and the second one runs over the system
(discrete) energy levels with the proviso that �i is equal to
infinity outside the reliable energy range. The determi-
nation of ~SS�E� through the minimization of L relies on
the statistical independence of each term in the sum of
Eq. (5). This is realized only approximately due to the
existence of an intrinsic scale of autocorrelation for the
reconstructed free-energy/entropy dictated by the corre-
lation lenght of the metadynamics. Therefore, the mini-
mization of (5) is meaningful provided that each energy
value is covered by several metadynamics runs, each
exploring an interval substantially larger than the
Gaussian widths.

The requirement of stationarity for L leads to self-
consistent equations which can be solved iteratively in
terms of the ci’s and ~SS�E�. Despite the presence of the
additive terms, ci’s, which distinguish the present juxta-
position scheme from others already available, the self-
consistent equations are simple both in their formulation
and numerical implementation. Convergence to the solu-
tions is typically reached in a few tens of iterations. The
least-squares approach also allows the expected standard
deviation of ~SS�E� to be calculated:

��~SS�E���1=2 �
X

i�1...n

�i�E��1=2: (6)

The use of the reconstruction strategy is first illustrated
for the 32� 32 Ising model, see Fig. 2. The curve for the
entropy, Fig. 2, results from the combination of runs at six
temperatures, T � 2, 2.6, 3.0, 3.4, 6.0, and 12.0. At each
temperature 1000 Gaussians where used with w=T � 0:5,
�E � 0:04, K � 0:4, and �c � 300. The total computa-
tional effort required 7:5� 105 MC sweeps. The com-
parison with the true system entropy reveals that S�E�
170601-3
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FIG. 2 (color). Results from the metadynamics runs carried
out on the 32� 32 Ising system. Left, top panel: the exact and
reconstructed entropies. In both cases the entropy has been
normalized so that

P
E exp�S�E�� � 1. The abscissa indicates

the energy per spin. Left, bottom panel: Difference between the
true and reconstructed entropy. The dispersion expected a
priori on the reconstructed entropy is shown with a red line.
Right panel: the exact and reconstructed specific heat and
average energy (inset) as a function of temperature.
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was correctly reconstructed throughout the explored en-
ergy range [�1:93; 1:93] (exploiting the ferro/antiferro
symmetry) with an uncertainty that is approximately
constant (its average being 0.17) and in agreement with
the one expected a priori from Eq. (6). The corresponding
average relative error on S�E� was 0.05%, similar to that
obtained with a comparable number of sweeps in the
recent and powerful approaches described in Refs. [5,6].

Analogous runs were repeated for the 50� 50 system
using three temperatures, T � 2:6; 4, and 12 and the same
parameters as before. By using 2:2� 106 MC sweeps
S�E� was reconstructed over the energy range [�1:8;
1:8] again with an average error of 0.24, again in agree-
ment with the one expected a priori. This confirms that
the proposed strategy allows good control over the final
accuracy on S.

We wish to point out that, in the high-temperature
limit, our approach has strong analogies with the Wang
and Landau algorithm, in which D�E� is also modified in
a history-dependent fashion [6] (their ‘‘pointwise’’ modi-
fication of the density of states can be viewed as a limit-
ing case of our Gaussians). As in their case, with one
metadynamics run at a single temperature we could ex-
plore the whole energy range. This, however, may be
inefficient, especially in a realistic model since it could
require an impractically large number of Gaussians.
Within our approach, it is not necessary to renounce to
the Boltzmann bias, and it is possible to focalize the
effort for exploring the region of phase space of relevance
for the temperature of interest. With this respect, our
metodology can be viewed as a finite temperature exten-
sion of the Wang and Landau algorithm.

Although in its present formulation the proposed
method allows an accurate and efficient recovery of a
system entropy, it is certainly susceptible to further gen-
eralizations and improvements. In particular, in order to
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improve the resolution, the height and/or width of the
Gaussians may be changed as the metadynamics pro-
gresses, in analogy with the method of Ref. [6]. The
application of the method to first order phase transitions
is conceptually straightforward although, in practice, the
elimination of hysteretic effects in the metadynamics
may prove computationally expensive. However, these
effects could be eliminated by exploiting the ability of
metadynamics to sample multidimensional free-energy
surfaces [10]. Supplementing E with auxiliary order pa-
rameters suitable for characterizing the transition should
facilitate the overcoming of the free-energy barriers as-
sociated with the nucleation of the new phase and thus
eliminate/reduce the hysteresis. The progress made here
constitutes a substantial improvement to the accuracy of
the metadynamics approach and illustrates its relation to
other very powerful methods like multiple-histogram
reweighting [2] and Wang and Landau algorithm [6].
Given the potential range of applications of metadynam-
ics we expect that our work will have an impact far
broader than the present demonstrative calculation on
the Ising model.
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