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We investigate the fermionic SU�N� Hubbard model on the two-dimensional square lattice for weak
to moderate interactions using renormalization group and mean-field methods. For the repulsive case
U > 0 at half filling and small N the dominant tendency is towards breaking of the SU�N� symmetry.
For N > 6 staggered flux order takes over as the dominant instability, in agreement with the large-N
limit. Away from half filling for N � 3 two flavors remain half filled by cannibalizing the third flavor.
For U < 0 and odd N a full Fermi surface coexists with a superconductor. These results may be relevant
to future experiments with cold fermionic atoms in optical lattices.
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situation with strong attractive interaction among all erate orbitals in crystals, but in general different overlaps
After the celebrated observation of Bose-Einstein
condensation [1] ultracold atom systems have received
growing attention in the field of condensed matter
physics. Recently, also quantum degenerate Fermi gases
have been realized [2–5], opening up the possibility to
study phenomena such as BCS superfluidity in a new
context. As a further important advance, optical lattices
have been used to realize the transition between a bosonic
superfluid and a Mott insulator [6]. It has thus been
demonstrated that cold atom systems can become a very
flexible and clean laboratory for many exciting phenom-
ena from the purview of condensed matter or interacting
many particle systems. In particular, cold fermions in
optical lattices may help to understand the notorious
complexities of strongly correlated solid state systems
such as the cuprate high-temperature superconductors [7].

Besides the realization of phenomena that are known to
exist in some form in condensed matter systems, it is also
interesting to ask whether the degrees of freedom offered
by cold atoms could give rise to states of matter that do
not have obvious counterparts in the physics of interact-
ing electrons. Typical electron systems, at least in the first
approximation, possess SU(2) spin rotational symmetry
which can be broken spontaneously, leading to magnetic
phenomena. For alkali atoms, the nuclear spin I and
electron spin S are combined in a hyperfine state. Its total
angular momentum F can be different from 1=2, and for
each F there are 2F � 1 hyperfine states differing by their
azimuthal quantum number mF. For example, for the
fermionic 40K, the nuclear spin is I � 4 and the lowest
hyperfine multiplet (at weak fields) has F � 9=2. In mag-
netic traps only a subset of these 2F � 1 states (the low-
field seekers) can be trapped [2], but this constraint can be
avoided by using all-optical traps [8].

In fact, the coexistence of the three hyperfine states
jF � 9=2; mF � �5=2;�7=2;�9=2i of 40K in an optical
trap has already been realized, with tunable interactions
due to Feshbach resonances between mF � ��5=2�=
��9=2� and mF � ��7=2�=��9=2�, respectively [9]. A
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three components can be realized, e.g., for the spin po-
larized states with ms � 1=2 in 6Li where the triplet
scattering length a � �2160a0 is anomalously large [10].

Optical lattices are created by a standing light wave
leading to a periodic potential for the atomic motion of
the form V�x� � V0

P
icos2�kxi�, where k is the wave vec-

tor of the laser, i labels the spatial coordinates, and the
lattice depth V0 is usually measured in units of the atomic
recoil energy ER � �h2k2=2m. In the following we con-
sider the two-dimensional (2D) case where i � 1; 2. It has
been shown [11] that the Hubbard model with a local
density-density interaction provides an excellent descrip-
tion of the low-energy physics. Here we are interested in a
situation where fermionic atoms with N different spin
states (‘‘flavors’’) m are loaded into the optical lattice. We
thus consider a Hubbard Hamiltonian

H � �t
X

m;hiji

	cyi;mcj;m � cyj;mci;m� �
U
2

X

i

n2
i : (1)

Here ni �
P

mni;m is the total number density of atoms on
site i which can be written in terms of creation and
annihilation operators, ni;m � cyi;mci;m. The interaction
[second term in Eq. (1)] is invariant under local U�N�
rotations of the N flavors with different m. The hopping
term of the atoms between nearest neighbors hiji reduces
the invariance of H to a global U�N� symmetry. Strip-
ping off the overall U(1) phase factor, we arrive at the
SU�N� Hubbard model. In the optical lattice the Hubbard
parameters are t � ER�2=

����
�

p
��3 exp��2�2� and U �

ERask
���������
8=�

p
�3, where � � �V0=ER�

1=4. as is the s-wave
atomic scattering length.

The fermionic SU�N� Hubbard model on the 2D
square lattice was studied in the large-N limit [12] in
the early days of high-Tc superconductivity, mainly as a
controllable limit connected to the then physically rele-
vant case N � 2. Already then, Affleck et al. [13] dis-
cussed realizations of SU(4) using the nuclear spin of
21Ne. A generalized SU�N� model could describe degen-
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between the orbitals pointing in distinct lattice directions
will break the SU�N� invariance.

In the following we focus on the density region near
half band filling with an average of N=2 fermions per site.
In the conventional N � 2 Hubbard model at half filling
the ground state exhibits spin-density wave (SDW) order,
and when the filling is changed d-wave superconductivity
is very likely [14]. The SDW state breaks the translational
invariance and spin-up and spin-down electrons (for stag-
gered moment along the z direction) occupy the two
sublattices differently (see Fig. 1). For large N and small
exchange interactions J, staggered flux order is expected
to dominate over the SU�N�-breaking states [12].

First we analyze the one-loop renormalization group
(RG) flow for the half filled band. We apply the perturba-
tive temperature-flow RG of Ref. [15] with a Fermi sur-
face (FS) discretization using 48 patches that has proved
to give good results for N � 2. As the initial condition we
fix the interaction at a high temperature T of the order of
the bandwidth. Then the RG flow describes the change of
the interactions as T is lowered and perturbative correc-
tions due to one-loop particle-hole and particle-particle
processes are taken into account. The interaction is de-
scribed by a coupling function V� ~kk1; ~kk2; ~kk3� [16], where
the flavor indices m1 and m3 of the first incoming particle
with wave vector ~kk1 and the first outgoing particle with ~kk3

are the same. Similarly m2 � m4. As for N � 2, the RG
flow goes to strong coupling. This means, as we start the
flow at high T with a local interaction V� ~kk1; ~kk2; ~kk3� � U,
some couplings start to grow when T is reduced and
finally leave the perturbative range. At this temperature
scale we stop the flow and analyze which coupling con-
stants grow most strongly. In analogy with the spin-1=2
case we consider couplings in the charge channel
Vc� ~kk; ~kk0; ~qq� � NV� ~kk � ~qq; ~kk0; ~kk� � V� ~kk0; ~kk � ~qq; ~kk� and in
the SU�N�-breaking channel, Vs� ~kk; ~kk0; ~qq� � �V� ~kk0; ~kk �
~qq; ~kk�, which, if divergent, signal a singular response for
a small external field coupling to one of the generators of
SU�N�. We define FS averages, �VV‘

c=s� ~qq� �
H

FS d#k
H

FS0 �

d#k0g‘� ~kk�g‘� ~kk
0
�Vc=s� ~kk; ~kk0; ~qq� . Here g1� ~kk��1 for the s wave

and g2� ~kk� � �coskx � cosky�=
���
2

p
for the d wave.

For N � 2 the s-wave spin couplings �VVs
s� ~QQ� with ~QQ �

��;�� diverge most strongly, indicating an antiferromag-
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FIG. 1 (color online). (a) AF spin-density wave state for
N � 2. Spin-up and spin-down particles occupy the two sub-
lattices with different probabilities (here idealized to 0 and 1).
(b) Flavor-density wave state for N � 3. Flavors 1 and 2 prefer
one sublattice, flavor 3 the other. (c) Staggered flux state for
N > 6: the arrows indicate the particle currents.
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netic (AF) SDWstate. This picture remains the same up to
N � 6, signaling a dominant tendency towards breaking
of the SU�N� symmetry with staggered two-sublattice
real space dependence. For N > 2 (especially for odd
N) this leads to the interesting question how the N=2
particles per site will arrange themselves on the bipartite
square lattice (see Fig. 1). Below we describe what hap-
pens in a mean-field analysis.

For N > 6 the flow to strong coupling changes quali-
tatively. Now the leading divergence is in the charge
couplings Vc� ~kk; ~kk0; ~QQ� with a dx2�y2-wave dependence on
~kk and ~kk0. �VVd

c diverges more strongly than �VVs
s (see Fig. 2),

albeit at lower temperature T � 0:014t for U � 4t and
N � 7. This signals a tendency towards staggered flux
(SF) order with long-range ordering of the expectation
value �SF �

P
~kk;m�coskx � cosky�hc

y
~kk;m

c ~kk� ~QQ;mi. This result
agrees with the large-N limit for small exchange inter-
actions J [12]. The SF state has surfaced several times for
the SU(2) case in connection with the high-Tc cuprates
and related models [12,17], also as d-density wave state
(although the particle density is not modulated). Its qua-
siparticles have a wave-vector-dependent energy gap that
vanishes at ~kk � ���=2;��=2� [18]. Nonzero �SF breaks
translational and time-reversal symmetry with alternat-
ing particle currents around the plaquettes (see Fig. 1). If
the particles were charged, their motion would give rise
to alternating magnetic moments pointing out of the
plane, hence the name staggered flux state. Note that
�SF is SU�N� invariant and no continuous symmetries
are broken. Correspondingly the SF state can order at
finite temperatures in 2D. For the same reason it may
be possible that the SF state sets in for somewhat lower N
than the critical N � 6 in our one-loop RG study that
neglects collective fluctuations.

Away from half filling the flow of the dominant ��; ��
instability gets cut off at some low-energy scale that
increases with the distance to half filling. Below there
is a tendency towards dx2�y2-wave Cooper pairing.
However, the energy scales for pairing instabilities be-
come very small with increasing N. Below we discuss
pairing for N > 2 in the attractive case U < 0.
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FIG. 2 (color online). Left plots: RG results for SU(3) at half
filling and U�4t. Upper left: flow of �VVs

s in the SU(3)-breaking
channel (dashed line) and �VVd

c in the SF channel, averaged
around the FS. Lower left: Vs� ~kk; ~kk0; ~QQ� (dashed line) and
Vc� ~kk; ~kk0; ~QQ� with ~kk fixed at ��; 0� and ~kk0 moving around the
FS. Right plots: the same for SU(8) at half filling.
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Having established that SU�N� symmetry breaking at
wave vector ��;�� is the dominant instability near half
filling with N < 6, we now turn to a mean-field descrip-
tion of the ground state for N � 3. We decouple the
interaction terms in the particle-hole channel with local
mean fields hcy';ic(;ii � M'(;i. The Hermitian local
mean-field matrix M'( can be decomposed into a traceful
part M0 proportional to the identity matrix t0 and a
traceless part

P
a�1;...;8M

ata with the eight generators ta
of the fundamental representation of SU(3). A finite value
of one of the traceless components breaks the SU(3)
invariance. We now restrict the analysis to commensurate
order, where only uniform and staggered components of a
commuting subset of the nine Ma acquire nonzero expec-
tation values. SU(3) has rank 2 and the two diagonal
generators commute mutually and with the identity ma-
trix. We can choose these 3 degrees of freedom to be
contained in the three flavor-density mean fields hn'i.

The results of T � 0 mean-field solutions are shown
in Fig. 3. At half filling, n � 1:5 per site, the SU(3)
breaking creates a flavor-density wave (FDW): two fla-
vors prefer one sublattice with equal density, while the
third flavor goes predominantly on the other sublattice
with a somewhat larger density modulation. The stag-
gered components do not add up to zero. Thus there is a
charge-density wave accompanying the SU(3) symmetry
breaking. For U � 3t the mean field Tc for this state is
�0:45t, but in the one-loop RG it is reduced down to
�0:12t. Experimentally, the FDWand the resulting lattice
period doubling can be detected by measuring the static
structure factor S�k� via flavor-dependent Bragg scatter-
ing [19] or in the particle density noise [20].

Figure 3 also describes the results away from half
filling. For example, at U � 1:6t and 1:42 < n < 1:48
per site, two flavors order with opposite staggered den-
sities on the two sublattices, keeping their individual
average density at half filling. Since the total density is
less than half filling, the third flavor gets decimated with
uniform density of �n � 1�. As can be seen from the right
plot in Fig. 3, this state occurs only above a critical
interaction strength Uc that increases from zero with
increasing distance to n � 1:5. The depletion of one flavor
allows the system to preserve the commensurate order
FIG. 3 (color online). Left: uniform densities of the N � 3
flavors (solid line: flavors 1 and 2; crosses: flavor 3) and
staggered densities (squares) vs total density for U � 1:6t.
Right: difference in uniform density between the two majority
flavors and the minority flavor vs U and total density hni per
site. The scale bar indicates the density difference per site.
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away from commensurate band filling. A similar pinning
of a part of the system to half filling is found in ladder
systems [21]. We add that for larger U and close to half
filling (1:46 < n < 1:5 per site for U � 4t) we find an-
other regime where the mean-field equations converge
slowly and microscopic phase separation might occur.

Next we consider attractive interactions U < 0. In
the SU(2) case in 2D, there is a power-law s-wave sin-
glet superconductor/superfluid (SSC) below a Kosterlitz-
Thouless transition away from half filling [22]. At half
filling Tc is zero, and SSC and charge-density wave
(CDW) mean-field states are degenerate. In the true
ground state, both orders coexist. One-loop RG finds in
this case that CDW and SSC susceptibilities are degener-
ate and diverge together at low T. This symmetry is
destroyed for N > 2, and the CDW susceptibility grows
faster than the one for SSC. Correspondingly we ex-
pect the ground state to have CDW long-range order
only. This is corroborated by a mean-field theory for
SU(3) which shows that CDW order suppresses any SSC
admixture, and that the CDW ground state has lower
energy than the SSC state.

We now consider the generic case sufficiently far away
from half filling. Then the dominant instability is on-site
pairing. We decouple the interaction as HU;mf: �
1
2

P
~kk;';(cy~kk'cy

� ~kk(
�'( � H:c: with the local mean fields

�'( � �U
P

~kkhc ~kk'c
� ~kk(i � ��('. For N > 2 these even

parity gap functions �'( transform nontrivially under
SU�N�. Depending on the global gauge, �'( takes differ-
ent values. This is unlike the SU(2) case where even parity
gap functions are singlets and invariant under spin rota-
tions [23]. For SU(2) the ground state is degenerate with
respect to the global phase of the gap function, and long-
wavelength variations of the latter are gapless in the
absence of long-range forces. In the SU�N� case we find
a higher degeneracy and more gapless modes. It turns out
that for SU(3) all gap functions with the same �2

0 �P
'(j�'(j

2 are degenerate and have the same total den-
sity of states. Apart from the global phase there are
four additional gapless modes, two associated with the
internal phases among �12, �13, and �23, and two modes
modulating j�12j, j�13j, and j�23j with fixed �0.

A particularly simple choice in the degenerate mani-
fold is �12 ��0 and �13 ��23 �0. Then flavor 3 remains
completely unpaired and metallic. Since we can always
rotate into this gauge, all SU(3) s-wave superconducting
mean-field states are one-third (neutral) metals and two-
thirds superfluids. The gauge with only �12 � 0 makes
the symmetry breaking pattern obvious. The original
symmetry group SU�3� � U�1� with nine generators gets
broken down to an SU(2) in flavors 1 and 2, leaving �12

invariant, and an additional U(1) that acts on the phase of
the unpaired flavor 3. This leaves five generators broken,
yielding the collective modes described above. For 3=8
band filling and U � 4t, the mean field Tc is �0:17t. The
coexistence of a full FS with a superconductor should
170403-3
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have interesting consequences. For example, the collec-
tive modes may be subject to damping below twice the
gap frequency and could hence render the ungapped
fermionic spectrum observable. Experimentally, these
Goldstone modes can be detected in the spectrum of
elementary excitations measured via Bragg scattering
off two noncollinear laser beams with frequency and
momentum difference !; q [19]. By monitoring the num-
ber of scattered atoms, this technique yields the dynami-
cal structure factor S�q;!�. The collective modes then
lead to peaks in the scattering cross section.

Theoretically, an additional weak p-wave attraction
could trigger a superfluid transition of the unpaired flavor
at much lower temperatures, leading to a coexistence of
even- and odd-parity superfluidity.

The SU(4) case is more complicated. There the degen-
eracy of the ground state is subject to more constraints
than just constant �0. The mean-field solutions have
j�12j � j�34j, j�13j � j�24j. and j�14j � j�23j. The
single particle spectrum is fully gapped.

In conlusion, the fermionic SU�N� Hubbard model on
the 2D square lattice can possibly be realized with ultra-
cold atoms in an optical lattice. Its ground states may
exhibit phenomena that do not occur right away in tradi-
tional solid state systems.We find a staggered flux state for
large N > 6 at half band filling where the particles run
around the plaquettes of the lattice in an alternating way.
This state has a partially gapped excitation spectrum
with nodes along the Brillouin zone diagonals [18], which
may be detectable via the momentum distribution func-
tion. Near half filling for N � 3 we find a redistribution
of the particle densities where two of the three flavors
remain half filled and occupy different sublattices while
the third flavor becomes depleted. Finally, in the attrac-
tive case U < 0 we point out that the s-wave paired
superfluid states may exhibit new collective modes. For
N � 3 a third of the particles remains ungapped, leading
to a full Fermi surface coexisting with the superfluid. We
expect this to be a general feature for odd N, also in three
dimensions or in the absence of a lattice potential.

Finally, we comment on the temperature scales which
we have given in terms of the hopping parameter t. It has
been shown [7] that if the optical lattice is switched on
slowly after termination of evaporative cooling, an addi-
tional adiabatic cooling process takes place. The final
temperature is given by the identity Tinitial=TF;free �
Tfinal=TF;lattice, where TF;free�lattice� denote the Fermi tem-
perature of the free atomic cloud and in the presence of
the lattice, respectively. In particular, in 2D at half filling
one has TF;lattice � 4t. As a result, the critical atomic
temperatures which have to be reached before the lattice
is switched on can be obtained from our results via the
substitution t ! TF;free=4. For the s-wave superfluid phase
(U < 0) and the flavor-density wave states (U > 0) we
therefore find transition temperatures of order 0:05TF
which are within reach experimentally.
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