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Phyllotactic Patterns on Plants
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We demonstrate how phyllotaxis (the arrangement of leaves on plants) and the deformation
configurations seen on plant surfaces may be understood as the energy-minimizing buckling pattern
of a compressed shell (the plant’s tunica) on an elastic foundation. The key new idea is that the strain
energy is minimized by configurations consisting of special triads of almost periodic deformations. We
reproduce a wide spectrum of plant patterns, all with the divergence angles observed in nature, and
show how the occurrences of Fibonacci-like sequences and the golden angle are natural consequences.
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gcd�m; n� � g, and 2�d and � are, respectively, the di-
vergence angle and the plastochrone difference or ratio.
The pair of integers (m; n) is called the parastichy pair.

influences of the elastic foundation, radial pressure, and
growth in the tunica (details will be given in an expanded
version of this Letter). All of these can be written in
It has long been recognized that plant leaves, florets,
and stickers are organized in patterns consisting of whorls
or spirals which often obey Fibonacci rules [1]. Likewise,
deformations of plant surfaces are observed to consist of
quasiregular polyhedra, especially hexagonlike shapes
[Fig. 1(a)] and ridges [Fig. 1(b)] [2]. How are such pat-
terns produced? In [3], Douady and Couder introduced an
ingenious magnetomechanical paradigm in which inter-
acting magnetic dipoles reach an energy-minimizing
configuration of whorls or spirals. Real plant surfaces,
however, are not pools in which mutually interacting
leaves float. The seminal works of Green and co-workers
[4] and Dumais and Steele [5] have demonstrated through
experiments that mechanical forces influence pattern
choice and that there are correlations between the regions
of compressive stress on a plant shoot and the regions
where phyllotactic patterns are formed. In this Letter we
show how minimizing the elastic energy of the plant
surface postdicts spiral and whorl patterns, how transi-
tions between patterns occur, and how patterns with
hexagons and spirals [Fig. 1(a)] compete with ridges
[Fig. 1(b)] and alternating 2-whorls [Fig. 1(c)].

Numbering the leaves on a plant (or stickers on a
cactus, florets of a flower, etc.) according to their distance
from the growth tip, one notes [see Fig. 1(a)] (i) that the
angle between consecutively numbered leaves is constant
for the plant, called the divergence angle, and (ii) that the
distances from the growth tip of consecutive leaves are
either of constant difference [as in Fig. 1(b)] or ratio [as in
Fig. 1(a)], called the plastochrone difference or ratio. A
consequence of these two observations is that the leaves
form a lattice in the plane of the radial r (plastochrone
difference) or ln�r� (plastochrone ratio) and circumferen-
tial angle � coordinates on the plant surface. One can
choose minimal-length generators of the phyllotactic lat-
tice of the form 1

g �m�; 2��md� q��; 1g �n�; 2��nd� p��,
where m, n, p, q, and g are integers such that pm� nq �
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For plants that exhibit spirals [Figs. 1(a) and 1(b)], leaves
lie at the intersection of m (n) spirals emanating clock-
wise (anticlockwise) from the growth tip. The pair (m; n)
most often consists of consecutive members of the
Fibonacci sequence [1], and the divergence angle is typi-
cally 2�d ’ 2� p�q

m�n :
Our picture is as follows [see Fig. 1(f)]: A region of

active cell division and enlargement is located at the tip
of a plant shoot. This region, called the shoot apical
meristem (SAM), consists of a one- or two-cell-thick
outer skin called the tunica (which we model as a
spheroidal shell of thickness h with two local radii of
curvature Rr and R� in the radial and circumferential
directions) connected to an inner squishy corpus of cells
(which we model as an elastic foundation). Near the outer
boundary of the SAM, the tunica hardens and experi-
ences compressive stresses [5] due to a combination of
growth pressures and the hardening process. As a conse-
quence, the tunica buckles, forming bumps (primordia)
on its surface that develop into new leaves or their analogs
on, say, cacti or pine cones. New material emanating from
the inner part of the SAM then becomes the material of
the hardening apical region and it, in its turn, also
buckles. Because the time scale for pattern formation is
fast compared to the spreading, we model the hardening
tunica region near the SAM boundary as an annular strip
M of a thin spheroidal elastic shell lying over an elastic
foundation a mean distance R from the north pole and
treat all physical parameters as time independent. Our
goal is to identify those buckling configurations which
minimize the elastic energy. This initial model ignores
influences of plastic or viscoelastic deformations; irrever-
sibility is included by simply treating the elastic shell as
being strongly overdamped.

The elastic energy E is an integral over M with con-
tributions from bending energy, strain energy, in-surface
deformations, and an external potential containing the
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FIG. 1. (a) Cactus stickers are labeled according to their distance from the center. The divergence angle D � 2�d is noted as are
the families of 3,8 (5) spirals emanating clockwise (anticlockwise) from the center of the plant. Also note the irregular hexagons,
one of whose vertices are marked in white. (b) This cactus also exhibits a 3,5-spiral arrangement, but the dominant pattern is the
8 (�3� 5) radial ridges. (c) The maxima of the succulent surface are arranged in pairs that alternate in angle; this is the
alternating 2-whorl (decussate) pattern. (d) Irregular hexagons are prominent on this cactus, whose stickers are arranged along 12
radial lines. (e) A theoretical reproduction of the cactus in (a). For the parameters � � 4, � � 1, R�

Rr
� 1, the deformation consisting

of three equal-amplitude states with the wave vectors k4; k5;k6 of the standard phyllotactic wave vector sequence (SPWS) evaluated
at g � 1 is an energy-minimizing configuration and is shown plotted on a sphere. The three families of spirals are also marked, as
well as the vertices of irregular hexagons. (f) Schematic of a plant tip. The shoot apical meristem (SAM) consists of region 1
(undifferentiated tissue) and region 2 (the annular region M of average radius R where growth forces lead to buckling of the plant
tunica). Tunica material goes from being in regions 1 to 2 to 3 as the shoot extends upward. Region 3 consists of material that has
now hardened, thus setting the phyllotactic pattern developed when it was in region 2; the bumps may now develop into leaves, etc.
Region 4 is the corpus of squishy material that acts as an elastic foundation to the tunica. (g) Theoretical reproduction of (c). In this
energy-minimizing configuration found by minimizing the elastic energy with the parameters � � 2, � � 1:7 and restricted to the
space consisting of the wave vectors k0 � k2;k0;k2;k1 of the SPWS evaluated at g � 2, the first mode has an amplitude that is one-
fifth the amplitude of the remaining modes. (h) Theoretical reproduction of cactus (d) found by restricting the energy, with � � 2,
� � 3, to the space consisting of the wave vectors k1;k2;k3 of the SPWS evaluated at g � 6. All modes have equal amplitude.
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terms of the shell deformation !�s; �� normal to the
original surface and the Airy stress function F�s; ��, a
potential for all surface stresses in the tunica. The radial
variable s represents r=

���������
R�h

p
. In cases where growth is an

increasing function of r, it is more appropriate to use a
metric reflecting the fact that the shell is scale rather than
Euclidean invariant. In that case s represents ln�r=

���������
R�h

p
�.

Variations of E with respect to ! and F give the
von Kármán–Föppl–Donnell equations [6], �!t � � �E

�!
(a force equilibrium equation) and �E

�F � 0 (a compatibil-
ity equation), whose static solutions have the form !0 �
const; F0 � �P��s2 � �2�. The ratio of compressive
stress in the angular direction (@2sF0 � �P�) to that in
the radial direction (@2�F0 � �P) is given by �; results of
[5] suggest that � � 1. The key parameters are the com-
posite applied pressure P coming from growth in the
corpus and the tunica and the aspect ratio � �
R=

���������
R�h

p
, which measures the distance of the hardening

region from the growth tip in units of the buckling wave-
length and is the analog of G�1 in [3].
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When the stress P is larger than some critical value Pc,
the constant deformation state is linearly unstable and
certain shapes and configurations are preferentially am-
plified. We write the deviation w�s; �; t� from !0 as
w �

P
N
j�1	Aj�t�e

iljs�imj� � complex conjugate
 and the
deviation f�s; �; t� from F0 in terms of the complex
amplitudes Aj�t� by solving iteratively the compatibility
equation 0 � �E

�F . Substituting these expressions into E
and averaging over space, the perturbation energy E�w; f�
can be written in terms of the amplitudes Aj:

E ��
XN

j�1

$j�lj; mj�AjA
�
j �

X
%123�A1A2A

�
3 � A�

1A
�
2A3�

�
XN

c;d�1

&cdAcA
�
cAdA

�
d: (1)

The active set A of kj � �lj; mj� is the set on which
the (real) linear growth rates $�lj; mj� are greater than
some small negative number (to allow for subcritical
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bifurcations); also, the angular wave numbers mj must be
integers. The cubic terms in (1) arise from all triads of
wave vectors k1; k2; k3 � k1 � k2 in A. The importance of
such interactions leading to hexagonal planforms is well
known from early works on convection and elasticity [7].
The coefficient %123 arises from the strain energy and is a
function of the triad wave vectors [8]. The quartic terms
are positive definite and are mainly due to the elastic
foundation (the squishy corpus). As the system is over-
damped, the time dependence of the Aj�t� are given by
gradient flows � @

@t Aj � � �E
�A�

j
, and therefore fAj�t�g

N
1

relax to local minima in E. Our task is to find energy-
minimizing configurations.

The key to success in this search (and the central
message of this Letter) is the dominance of the triad
interaction encoded by %123. Fibonacci-like sequences
and hexagonal configurations occur precisely because of
the dominance of triads, the former because the angular
wave number of a triad follows Fibonacci addition rules
induced by the condition k1 � k2 � k3. It is illuminating
to write the wave vectors in a triad k1 � �l1; m1�;
k2 � �l2; m2�; k3 � �l1 � l2; m1 �m2� in terms of the
phyllotactic coordinates introduced earlier as l1 �
2�
� �q�md�, m1 � m; l2 �

2�
� �p� nd�, m2 � n, where

pm� nq � �g � �gcd�m; n�. The intersection in the
�s; �� plane of the lines kj � x � 2�nj, x � �s; ��, j �
1; 2; 3, nj an integer, are, for equal amplitudes Aj, the
maxima of the deformation w �

P
3
j�1	Aj�t�e

iljs�imj� �

complex conjugate�
 and occur on a lattice in the (s; �)
plane generated by the phyllotactic lattice generators
vm � 1

g �m�; 2��md� q��; vn �
1
g �n�; 2��nd� p��. The

number � is the dimensionless plastochrone difference
or ratio depending on whether s represents r=

���������
R�h

p
or

ln�r=
���������
R�h

p
�. For Aj � jAjjei(j , and a given choice of m; n,

%123 � %�d; �� cos�(1 � (2 � (3�. It turns out that %�d; ��
is, for large �, an extremely sensitive function of d and
peaks dramatically at three special choices q

m ; pn ;
p�q
m�n of d.

Moreover, this Dirac delta function nature of %�d; �� is
relatively insensitive to the physical parameters, except
that some initial curvature in the region M (i.e., Rr;
R� <1) is required; see below.

As the energy (1) is smaller when the coefficients $j
and %123 are larger, the simplest energy-minimizing con-
figurations consist of the special triads of periodic defor-
mations with local wave vectors k1 � 	2�� �q�md�; m
,
k2 � 	2�� �p� nd�; n
, k3 � 	2�� �p� q� �m� n�d�; m�
n
 in the set A and with d ’ q

m ; pn ;
p�q
m�n . Because the linear

growth rates are slightly larger for d � p�q
m�n , it turns out

that the energy is minimized, quite independently of the
physical parameters, at a value very close to d � p�q

m�n and
for (1 � (2 � (3 � 0. The number � is also chosen by
energy minimization.

But we must also determine the choice of the integers
m, n. To this end, first note that a plant begins its life with
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a smaller value of the radius R and therefore a smaller
� � R=

���������
R�h

p
, but this parameter increases as the plant

increases in size. For a fixed and moderate value of �,
when the composite growth stress P exceeds Pc, the ! �
!0 solution is unstable and the fastest growing modes are
purely circumferential if � > 1. Among neighboring
modes, the mode k3, which also has a decomposition k3 �
k1 � k2 where all three are in or close to the active set A,
will, because %123 is large, quickly destabilize again
into an energy-minimizing configuration with three
modes k1 � 	2�� �q�md�; m
, k2 � 	2�� �p� nd�; n
, k3 �
k1�k2, where d is approximately equal to p�q

m�n . This
makes k3 almost purely circumferential. As the plant
slowly grows, � increases and the set of active modes
(and therefore the energy-minimizing configuration)
changes. Most often it is a neighboring triad of periodic
deformations with wave vectors k2;k3;k4 � k2�k3 which
become the lowest energy configuration. A transition will
occur and the plant will exhibit a combination of k1;k2;k3
and k2;k3;k4 configurations with the former (latter) more
dominant in the outer (inner) region.

The standard phyllotactic wave vector sequence
(SPWS) k0 � 	2�� ��1�; 0
, k1 � 	2�� �1� gd�; g
; . . . ,
where g is an integer and kj�2 � kj � kj�1 encodes
most of the configurations observed in nature (except
those in which ridges, not triads dominate; see below).
As � increases, the energy-minimizing triad moves up-
ward in this sequence, with bifurcations (transitions)
taking place between triads of modes with angular
wave numbers �0; g; g�; �g; g; 2g�; �g; 2g; 3g�; . . . ; �m; n;
m� n� and d ’ p�q

m�n . For g � 1 (respectively, g � 2),
the parastichy pair m, n consists of consecutive members
of the Fibonacci sequence (respectively, the double
Fibonacci sequence 2; 2; 4; . . . ), and for g � 1, as m; n
become large consecutive Fibonacci numbers, the diver-
gence angle 2� p�q

m�n tends to the golden angle 2�	4=
�1�

���
5

p
�2
 ’ 2��0:381 966� [9].

Figures 1(e) and 1(h) show examples of simple energy-
minimizing configurations consisting of three periodic
deformations. The steps taken to find the optimal configu-
ration of Fig. 1(e) are as follows: For the choice of
parameters stated in the caption, we compute the set A.
For some values of d, the wave vectors k4 � 	2�� �1� 3d�;
3
, k5 � 	2�� �2� 5d�; 5
, k6 � 	2�� �3� 8d�; 8
 of the
SPWS evaluated at g � 1 all lie in A, and by computing
the energy (1) for all these values of d, we find that it is the
choice of d ’ 0:378 ’ 3

8 that results in a minimization of
the elastic energy E restricted to the space spanned by the
three wave vectors. Evaluating the elastic energy at d �
0:378, the stable stationary solution of the equations
�@tAj � � �E

�A�
j
, j � 1; 2; 3, is such that jA1j ’ jA2j ’

jA3j > 0. Plotted in Fig. 1(e), then, is the deformation
consisting of the triad of equal-amplitude periodic defor-
mations of wave vectors k4;k5;k6 evaluated at d � 0:378.
This results in a Fibonacci 3,5,8-spiral pattern. A similar
168102-3
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procedure produces the pattern illustrated in Fig. 1(h).
Note, in particular, the (irregular) hexagons in Figs. 1(e)
and 1(h).

This, however, is only part of the story. The choice of
energy-minimizing amplitudes A1; A2; A3 in a given triad
may vary from the usual jA1j ’ jA2j ’ jA3j which pro-
duces the hexagonal configurations of Figs. 1(e) and 1(h)
to a choice in which there is one clearly dominant ampli-
tude jA1j ’ jA2j � jA3j, where k3 is the almost purely
circumferential mode with its ridges lying along radial
lines. This occurs when %123 is less dominant. The domi-
nance of %123 depends on the initial curvature of the plant
near its growth tip. For less curved or flattish-topped
plants (e.g., the saguaro) %123 is small, and in this case
it is the balance of the quadratic and quartic terms in (1)
which is most important. For such plants, one usually
does not observe Fibonacci-like sequences. There are
also plants in which surface deformations are not best
described by a single triad, but by a combination of two or
more triads [see Fig. 1(g)]. These variations are included
in our model but the results are left to a more detailed
report which will also explicate the competition between
ridges and hexagonal configurations and discuss defects
in plant patterns.
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