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Concurrence of Mixed Bipartite Quantum States in Arbitrary Dimensions
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2Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Aleja Lotników 32/44, PL-02-668 Warszawa, Poland

(Received 4 November 2003; published 23 April 2004)
167902-1
We derive a lower bound for the concurrence of mixed bipartite quantum states, valid in arbitrary
dimensions. As a corollary, a weaker, purely algebraic estimate is found, which detects mixed entangled
states with a positive partial transpose.
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only upper bounds for the entanglement of a given state
but cannot reliably distinguish it from separable states,

pij�ii in Eq. (1). Given a valid decomposition fj
iig of
% into subnormalized states, any other suitable set fj iig is
obtained [13] by transformations V 2 CN�r, with r and
In classical physics, one can always divide a system
into subsystems, such that complete information on the
entity implies a complete description of its individual
parts, and vice versa. In quantum physics, this no longer
holds true: While one can still divide a system into
subsystems, a complete description of the system state
in terms of a pure state does not necessarily assign a pure
state to each subsystem. The subsystems of generic pure
states are correlated in a way without a classical analog—
they are entangled.

While such quantum entanglement arguably incarnates
the key difference between the quantum and the classical
world, and is nowadays understood as a resource in vari-
ous tasks of quantum information processing [1] such as
cryptography, teleportation, and quantum computation, it
remains hard to quantify, for arbitrary quantum states
[2]. In particular, when coupled to an environment, pure
quantum states rapidly evolve into mixed states which
bear entanglement together with classical probabilistic
correlations, and the latter have to be distinguished from
the former. Furthermore, the complete characterization of
the nonclassical correlations of a given state becomes an
ever more complex task as the Hilbert space dimension
increases, thus turning into a computationally extremely
intricate problem.

No equally versatile and computationally manageable
entanglement measure for mixed states is available thus
far, although various more or less pragmatically moti-
vated quantities have been proposed. The most popular
indicator of entanglement is the positive partial transpose
criterion [3] and variants thereof, such as negativity [4],
though these do not reliably detect arbitrary entangled
states. Another approach for quantifying entanglement is
through entanglement witnesses [5] which, however, need
to be constructed anew for each given quantum state, and
such construction can be rather involved [6]. Finally, there
are mixed state generalizations of pure state entangle-
ment measures [7–11], which, in general, require a high
dimensional optimization procedure. By construction,
any numerical evaluation of these latter quantities yields
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let alone provide a reliable quantitative estimate of the
state’s actual degree of entanglement.

In the present Letter, we improve on that situation: We
derive a lower bound of concurrence [7,9]—a quantity
which is strictly larger than zero for nonvanishing entan-
glement —of mixed bipartite quantum states in arbitrary
dimensions. Our bound is given by a purely algebraic
expression which is readily evaluated for arbitrary states,
and can be tightened numerically on a relatively low-
dimensional parameter space, of reduced dimension as
compared to hitherto available optimization procedures
[12]. This complements already available upper bounds
[10,11] and provides, for the first time, a rather precise
estimate of the actual value of concurrence.

We start out with the definition [11] of a pure state’s
concurrence as c� � �

����������������������������������
jh j ij2 � Tr%2

r

p
, where the re-

duced density matrix %r is obtained by tracing over one
subsystem. The concurrence of mixed states % is then
given as the convex roof,

c�%� � inf
X
i

pic��i�; % �
X
i

pij�iih�ij;

pi � 0;
(1)

of all possible decompositions into pure states j�ii.
Consequently, c�%� vanishes if and only if % exhibits
purely classical correlations, i.e., if the state is separable
and, hence, can be represented as a convex sum over
product states, % �

P
ipi%

�1�
i 	 %�2�

i , with pi � 0, and
%�1�
i and %�2�

i states on the subcomponents H 1 and H 2

of the total Hilbert space H � H 1 	H 2. Given the
dimensions n1 and n2 of H 1 and H 2, respectively,
Eq. (1) defines a high dimensional optimization problem
which is rather cumbersome to solve. Furthermore, as
already mentioned above, such optimization can yield
only an upper bound for c�	�, by virtue of the definition
of the infimum.

To estimate c�	� from below, we first replace, for
convenience, the j�ii by the subnormalized states j ii ������p
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N the lengths of the sets fj
iig and fj iig, respectively,

j ii �
Xr
j�1

Vijj
ji;
XN
i�1

Vy
kiVij � �j;k: (2)

It is now crucial to realize that the concurrence of a pure
state j i can be expressed as the square root of the
function

f� 1;  2;  3;  4� � h 2j 1ih 4j 3i

� Tr1��Tr2j 1ih 2j��Tr2j 3ih 4j��;

(3)

evaluated at  �  1 �  2 �  3 �  4, where Tr1 and Tr2
denote the traces over the first and the second subsystem.
f is linear in its first and third, and antilinear in the
second and fourth argument. Because of these properties,
the definition (1) can be reformulated as an infimum over
transformations V:

c�%� � inf
V
C; with C �

XN
i�1

��V 	 VAVy 	 Vy�iiii�
1=2:

(4)

Herein, the tensor A, defined by Almjk � f�
j;
l; 
k; 
m�

[14] is Hermitian, Almjk � �Ajklm�
�, and symmetric with

respect to a simultaneous exchange of both its covariant
and contravariant indices Almjk � Amlkj . Because of the sym-
metry of the transformation V 	 V under exchange of the
subsystems of A, we can replace Almjk in Eq. (4) by the
symmetrized elements:

A lm
jk � 1

2�A
lm
jk � Almkj �; (5)

which is equivalent to a symmetrization over both sub-
systems in Eq. (3). It can be shown that A is positive
semidefinite and that its support lies in an antisymmetric
subspace; i.e., all elements of A with respect to fully
symmetric linear combinations of product states vanish.
Since the antisymmetric subspace has dimension m �
n1�n1 � 1�n2�n2 � 1�=4, A has at most m nonvanishing
eigenvalues.

Because of the discussed symmetries, A can be ex-
panded in a basis of real symmetric matrices �� 2 Rr�r,

A lm
jk �

X
�;�

B���
�
jk�

�
lm; (6)

with B Hermitian and positive semidefinite. With the
eigenvalues and associated eigenvectors of B (B~xx� �
�� ~xx

� and ~xx� � �x�1 ; . . . ; x
�
i ; . . .�

T), we can construct a
properly normalized eigensystem T� of A:

T� �
�������
��

p X
�

x��e
i
��� � T �e

i
�; � � 1; . . . ; m:

(7)
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We explicitly take into account the free phase factors
exp�i
��, as they will be crucial in the following.
Consequently,

A lm
jk �

X
�

T�jk�T
�
lm�

� �
X
�

T �
jk�T

�
lm�

�: (8)
Hence, Eq. (4) can now be rewritten as

C �
XN
i�1

 X
�

j�VT�VT�iij2
!
1=2

; (9)
the infimum of which gives the concurrence of the mixed
state %.

Note that Eq. (9) resembles the concurrence vector
introduced in [15], a quantity with elements analogous
to
PN
i�1 j�VT

�VT�iij. In [15] it was shown that the con-
currence vector vanishes identically, for suitably chosen
V, if and only if % is separable, thus providing a separa-
bility criterion.While the very same equivalence holds for
vanishing C, the explicit expression (9) allows us to
proceed further: The Cauchy-Schwarz inequality
�
P
�x

2
��

1=2�
P
�y

2
��

1=2 �
P
�x�y�, and

P
�jz�j � j

P
�z�j,

for z� 2 C, imply

c�%� � inf
V

XN
i�1

��������
"
V

 X
�

z�T
�

!
VT
#
ii

��������; (10)
for any set z� � y� exp�i
��, with y� � 0,
P
�y

2
� � 1.

The infimum on the right-hand side (rhs) is given by  1 �P
i>1 i, where  j are the singular values of T �P
�z�T �, i.e., the square roots of the eigenvalues of the

positive Hermitian matrix TT y in decreasing order [10].
Hence, we arrive at the desired lower bound,

c�%� �  1 �
X
i>1

 i; (11)
with the  j dependent on the choice of the y� and 
�.
Note that each set fy�;
�g provides a lower bound of

c�%�, which can be tightened by numerical optimization.
However, all the examples we have considered thus far
suggest that there is one matrix T � that gives the main
contribution to the rhs of Eq. (10). Hence, the singular
values of this matrix provide a purely algebraic lower
bound for c, which often leads to satisfactory results
even without further numerical refinement. As an ex-
ample, consider the family of two spin-1 states,
167902-2
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FIG. 1. Lower bound (full line) of the concurrence c of the
family of two spin-1 states %a [16], together with its purely
algebraic approximation c�1�l �  �1�

1 �
P
i>1 

�1�
i (dashed line),

over the entire parameter range a � 0 . . . 1. While %a has
positive partial transpose and is therefore not detected via
the negative partial transpose criterion for entanglement, al-
ready the algebraic approximation of our lower bound inden-
tifies the state as nonseparable, without need for numerical
optimization, for all a. Optimal lower bound and optimal upper
bound [dots, obtained by minimizing C in (4) [17]] confine the
actual value of concurrence to an interval with relative un-
certainty of the order of approximately 10%.
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%a �
1

1� 8a

2
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;

a 2 �0; 1�; (12)

with � � �1� a�=2 and # �
��������������
1� a2

p
=2, described in

[16]: The state %a has positive partial transpose in the
entire range of a; i.e., the standard criterium [3] identify-
ing a mixed state as nonseparable via negativity of its
partial transpose is inoperational here. Notwithstanding,
the singular values of T 1 associated with the largest
eigenvalue ofB in Eq. (6) above already provide a positive
lower bound c�1�l �  �1�1 �

P
i>1 

�1�
i for c�%a�, as shown in

Fig. 1: %a is detected as entangled without any need for
further numerical optimization. However, the figure also
shows that, taking into account all T �, numerical opti-
mization significantly raises the lower bound. The re-
maining gap with respect to the upper bound obtained
from numerical minimization of C in (4) leaves a relative
167902-3
uncertainty of the order of approximately 10% on the
actual value of c�%�, in the particularly pathological test
case considered here.

Let us finally note that the original definition of con-
currence [9] is nicely embedded in our formalism. In the
case of two-level systems, one has m � 1; i.e., there is
only one nonvanishing matrix T1. Therefore, Eq. (9) sim-
plifies to

C �
XN
i�1

j�VT1VT�iij; (13)

and the infimum can be derived analytically. Indeed, it is
found that T1 coincides with $ defined in the original
work [9].

In conclusion, we have shown that a suitable represen-
tation of the concurrence of bipartite mixed quantum
states in terms of the eigensystem of a tensorial quantity
allows for the derivation of a lower bound of c�%�, for
arbitrary 	. Not only can this bound be tightened by an
optimization under the comparatively simple constraintP
�jz�j

2 � 1, over a complex vector space of dimension
n1�n1 � 1�n2�n2 � 1�=4—at least a factor 4n1n2 smaller
than dimensions of optimization procedures hitherto
available. It also can be reduced to a purely algebraic
bound which appears to provide good estimates, accord-
ing to numerical data which complement our analytical
work. Last but not least, our result can serve to derive
lower bounds on the entanglement of formation E [8] of a
mixed quantum state, thus quantifying the minimally
required resources to prepare %: Given any monotonously
increasing, convex function E which satisfies E�c� �� �
�Tr%r log%r, it follows that E�%� � E�c�%��, with the rhs
bounded from below by our bound (11).
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