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Quantum Shuttle Phenomena in a Nanoelectromechanical Single-Electron Transistor
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An analytical analysis of quantum shuttle phenomena in a nanoelectromechanical single-electron
transistor has been performed in the realistic case, when the electron tunneling length is much greater
than the amplitude of the zero point oscillations of the central island. It is shown that when the
dissipation is below a certain threshold value, the vibrational ground state of the central island is
unstable. The steady state into which this instability develops is studied. It is found that if the electric
field E between the leads is much greater than a characteristic value Eq, the quasiclassical shuttle picture
is recovered, while if E � Eq a new quantum regime of shuttle vibrations occurs. We show that in the
latter regime small quantum fluctuations result in large (i.e., finite in the limit �h! 0) shuttle vibrations.
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ment in order for a shuttle instability to develop. To electrons in each electrode are noninteracting with a
The field of nanoelectromechanics has grown rapidly
during the last few years [1–3]. In particular, a nano-
electromechanical single-electron transistor (NEM-SET)
has been attracting a lot of theoretical [4–20] and ex-
perimental [21,22] attention. A NEM-SET is a single-
electron transistor (SET) where the position of a central
island (a small metal particle or a single molecule) is not
rigidly fixed but can oscillate under the influence of an
elastic potential. In [4] it was shown that in the regime
where the island motion can be treated classically and the
electron tunneling can be described by the Pauli master
equation, a new phenomenon—a so-called shuttle insta-
bility occurs. When a large enough bias voltage is applied
between the leads, the island oscillates with an increasing
amplitude until it reaches a stable limit cycle where it
oscillates with some constant amplitude. The key issue in
[4] was that as the island moves along the classical
trajectory its charge q�t� correlates with its velocity _xx�t�
in such a way that the time average q�t� _xx�t� is positive.
This results in accumulation of energy in the vibrational
degree of freedom and in the development of the shuttle
instability (see the review [23])

Further miniaturization of the NEM-SET device
brings up quantum effects. In a nanometer-size metal
particle, the electron energy level spacing is about 10 K
and the discreteness of the electron energy spectrum can
no longer be neglected even for temperatures of a few
kelvin. In this case the characteristic de Broglie wave
length associated with the island can still be much shorter
than the length scale of the spatial variations of the
‘‘mechanical’’ potential. If so, the motion of the island
can be treated classically. Shuttle phenomena in this
regime have been studied theoretically in [7]. However,
the classical analysis of the shuttle instability (performed
in [7]) is limited to displacements that exceed the ampli-
tude x0 �

������������������
�h=�M!�

p
of the zero point oscillations of the

island (M is the mass of the island and ! its vibration
frequency). This quantum limitation raises the question
of whether or not a threshold value exists for the displace-
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answer this question a quantum theory of the shuttle
instability must be developed. Moreover, the quantization
of the island motion might also effect the steady-state
regime that develops.

Different aspects of the NEM-SET in the regime of
quantized mechanical motion of the island have already
been studied [6,10,13,14,16–19]. However, no shuttle in-
stability was found because either the coupling between
electron tunneling and mechanical vibrations was ig-
nored [6] or strong dephasing in the mechanical dynamics
was expected [13,14,16–19]. In this Letter we will study
the quantum dynamics of a NEM-SET for arbitrary dis-
sipation rates. A study complementary to ours has re-
cently been carried out by Novotny et al. (compare
[8,15]). However, the numerical analysis reported in
Ref. [15] was done only for the case when a relatively
small number of excited vibrational states are involved.
This is the case only if the amplitude of zero point
oscillations x0 is of the order of the electronic tunneling
length �? and if the dissipation is large enough. Here we
present a complementary analytical study valid under the
more realistic condition, x0=�? � ��1 � 1.

We will formulate the problem at hand in terms of the
dimensionless displacement x � X=x0 and momentum
p � x0P= �h of the island. If we measure all lengths in
units of x0 and all energies in units of �h!, the
Hamiltonian of the system reads

H �
X
�;k

��ka
y
�ka�k 	 
�0 � dx�cyc	Hosc

	
X
�;k

T��x�
a
y
�kc	 H:c:� 	HB 	HB�osc; (1)

where ay�k creates an electron with momentum k in the
corresponding lead, � � L;R is the lead index, cy creates
an electron on the single energy level in the island, d �
eE=�M!2x0� is the shift in the equilibrium position of the
oscillator due to the electric field E between the leads,
Hosc � 
p2 	 x2�=2 is the free oscillator Hamiltonian,
and TL;R�x� � TL;R�0� exp
�x=��. We assume that the
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constant density of states D� and that all relevant ener-
gies are small compared to the level spacing in the central
island which for typical systems under consideration ex-
ceeds 100 meV. In this case only one single level in the
island is relevant to the problem. The term HB describes a
heat bath and the last term HB�osc relates to the coupling
between the oscillator and the bath [24]. We assume that
this coupling is linear in x and treat it in weak-coupling
limit. For simplicity we will consider only zero tempera-
ture case.

The time evolution of the system is governed by the
Liouville–von Neumann equation for the total density
operator. After projecting out the leads and the thermal
bath we obtain an equation of motion (EOM) for the
reduced density operator � of the vibrational degree of
freedom and the electronic state in the island. Under
conditions of large bias (eV 
 �h!; �0), the EOM for �
becomes Markovian (for details, see [8,15,25,26]):

@t� � �i
Hv 	 ��0 � dx�cyc; ��

	 �DL�2T̂TLc
y�cT̂TL � fT̂T2

Lcc
y; �g�

	 �DR�2T̂T
y
Rc�c

yT̂TR � fT̂T2
Rc

yc; �g� 	L � ; (2)

where L � � ��i =2�
x; fp; �g� � � =2��x; 
x; ���,
f�;�g denotes the anticommutator,  � 1 is a dissipation
rate, and time is measured in units of!�1. It follows from
Eq. (2) that the time evolution of the electronic off-
diagonal elements of the reduced density operator is
decoupled from the evolution of the diagonal elements.
After shifting the origin of the x axis to the point x � d=2
and introducing ���x� � 2�D�T2

��x	 d=2� we get the
system of EOMs for the diagonal elements �00 � h0j�j0i
and �11 � h1j�j1i, where j1i � cyj0i:

@t�00 �� i
�
Hosc 	

d
2
x; �00

�
�

1

2
f�L�x�; �00g

	
������������
�R�x�

p
�11

������������
�R�x�

p
	L �00; (3)

@t�11 �� i
�
Hosc �

d
2
x; �11

�
�
1

2
f�R�x�; �11g

	
������������
�L�x�

p
�00

������������
�L�x�

p
	L �11: (4)

In what follows we will deal with the evolution of the
density operator �	 � �00 	 �11, which determines the
expectation values of the observables in vibrational space,
and �� � �00 � �11, which describes the shuttling of
electrons.

The problem under consideration can be solved analyti-
cally in the limit of a weak electromechanical coupling,
d=� � eE=�M!2�?� � 1. This limit has already been
used in the classical description of shuttle phenomena
[4,7], where it assured that an electric force acting on
the charged island is much weaker than a typical elastic
force. For simplicity, we will also assume that the tun-
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neling coupling is symmetric, �L�0� � �R�0� � �=2
and � � 1.

To study the vibrational dynamics near the ground state
we use the small parameter ��1 � 1 to linearize the
problem with respect to the displacement x. The linear-
ized system of equations, which describes the time evo-
lution of the expectation value of the displacement
�xx�t� � hxi and the momentum �pp�t� � hpi, of the island
(h�i � Trf�	�t��g) has the following form:

_�xx�xx � �pp ; _�pp�pp � � �pp� �xx�
d
2
n� ;

_nn� � ��n� 	
2�

�
�xx;

(5)

where n� � 1–2Tr�11. An analysis of Eq. (5) shows that
an initial deviation from the equilibrium point grows ex-
ponentially in time with rate constant � � � thr �  �=2
if  <  thr � �d=�. Therefore, when the dissipation is
below the threshold value  thr, the vibrational ground
state becomes unstable.

The exponential increase of the displacement drives
the system into the nonlinear regime of the vibrating
dynamics, where the system may reach a stable stationary
state. In order to study this regime we will use Wigner
function analysis suggested in [15]. The Wigner distribu-
tion function (WDF) corresponding to the density opera-
tor �� is defined by

W��x; p� �
1

2�

Z 	1

�1
d%e�ip%

�
x	

%
2
j��jx�

%
2

�
: (6)

After rescaling the displacement, X � x=�, and mo-
mentum, P � p=�, we obtain the following EOMs for
the WDFs:

@tW	 � 
X@P � P@X 	 L̂L1�W	 	 L̂L2W�; (7)

@tW� � 
X@P � P@X 	 L̂L1 � �	�W� 	 
L̂L2 	 ���W	;

(8)

where �� � �R�X� � �L�X� and

L̂L 1 �  @PP	
 

2�2 @
2
P �

�	

2

X1
n�1

���n

�4n�2n�!
@2nP ; (9)

L̂L 2 �
d
2�

@P 	
��

2

X1
n�1

���n

�4n�2n�!
@2nP : (10)

It is convenient to study the steady-state solution in polar
coordinates, X � A sin’, P � A cos’. In these coordi-
nates, the steady-state solution is determined by the sys-
tem of equations


@’ � L̂L1�W	 � L̂L2W�; (11)


@’ 	 �	 � L̂L1�W� � 
L̂L2 	 ���W	 ; (12)
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with the periodic boundary conditions W��A;’	 2�� �
W��A;’�. After eliminating W� from the system of
Eqs. (11) and (12), we get a closed equation for W	


@’ � L̂L�W	 � 0; (13)

where L̂L � L̂L1 	 L̂L2
1� ĜG0L̂L1�
�1ĜG0
�� 	 L̂L2� and ĜG0 �


@’ 	 �	�
�1 is defined on the space of functions which

are 2� periodic in the variable ’. It is convenient to
define a projector P which maps a 2� periodic function
f�’� to its mean: Pf�’� �

R
2�
0 f�’�d’=�2�� and a pro-

jector Q � 1� P . We use these projectors to decompose
W	 into two parts: W	�A;’� � �WW	�A� 	 ~WW	�A;’�,
where �WW	 � PW	 and ~WW	 � QW	. By inserting this
decomposition into Eq. (13) and acting on this equation
from the left with P and Q, respectively, we obtain two
coupled equations for �WW	 and ~WW	:

P L̂L
 �WW	 	 ~WW	� � 0; (14)


@’ �QL̂L� ~WW	 � QL̂L �WW	: (15)

Formally solving Eq. (15) for ~WW	 and substituting the
result into Eq. (14) gives a closed equation for �WW	�A�,

P L̂L
1� ĝg0QL̂L��1 �WW	�A� � 0; (16)

where ĝg0 � @�1
’ acts in the space of 2�-periodic functions

with zero mean. One can see from Eq. (15) that ~WW	 is of
lower order in the small parameters d=�, ��2, and  than
�WW	. Therefore, in the leading order approximation we

can write W	�A;’� � �WW	�A�. If we write the left-hand
side of Eq. (16) in terms of A and ’ and expand it to
second order in the parameters d=�, ��2, and  , we get

A�1@AA
f�A� 	D�A� @A� �WW	�A� � 0; (17)

where

f�A� �
A
2

�
 �

d
�
�0�A� �

1

2�4 �1�A�
�
; (18)

D�A� �
 

4�2 	
1

4�4 ,1 	

�
d
2�

�
2
,2 	  

d
2�

,3 > 0; (19)

�0 � �A�1P cos’G, �1 � A�1P cos’�� @PG, G �
ĜG0��, and ,k � ,k�A;��.

We will see later that the functions �0�A� and �0�A�
determine the behavior of �WW	. The positive function
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FIG. 1. Function �0�A� for �=� �h!� � 10�1, 10�2, 10�3.
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�0�A� (see Fig. 1) behaves as ��1	 A2=2� in the vicinity
of A � 0 and for large A it decreases as ln
2A=��=��A2�.
The function �1�A� (see Fig. 2) is positive and grows as
4A2�3=9 for small A. For large A it is negative and goes to
zero as �2=��A2�.

Solving Eq. (17) gives

�WW 	�A� � Z�1 exp



�

Z A

0
dA

f�A�
D�A�

�
; (20)

where Z is a normalization constant determined by the
condition 2�

R
1
0 dAA �WW	�A� � 1.

The steady-state solution W	 is localized in the phase
space around points of maxima of �WW	. From Eq. (20) one
can see that �WW	 has maxima at points AM, where
f�AM� � 0 and f0�AM� > 0. In the vicinity of these
points, �WW	 is bell shaped and can be approximated by a
Gaussian distribution function with variance .2 �
D�AM�=f

0�AM�. Expanding Eq. (18) around A � 0, we
find that f� A� �  thr�=2 as A! 0. Thus, �WW	 always
has an extremum at A � 0: a maximum if  >  thr and a
minimum if  <  thr. This reflects the fact that the vibra-
tional ground state is unstable when the dissipation is
below the threshold value (the shuttle instability dis-
cussed above).

The global behavior of �WW	 depends on the electric field
E. We have found two different regimes: an electric field
driven ‘‘classical’’ regime, where E 
 Eq � C��� �h2=
�eM�3

?� and a ‘‘quantum’’ regime, when the electric field
is weak, E�Eq. The dimensionless C����max
�1�A��=
max
�0�A�� depends only weakly on � (for � �
10�3–10�1, it is of the order of 10�2).

In the classical regime, �WW	 has a maximum at finite
A � Acl, if the dissipation is sufficiently weak,  <  0 �
max
�0�A�� d=� >  thr. The width of theWDF around Acl

is of the order of maxfd=�; ��3d�1g � 1, which allows
for a classical interpretation of that regime. The value of
Acl corresponds to the stable limit cycle amplitude of the
classical shuttle oscillations obtained in [4]. This ampli-
tude increases as the value of the dissipation decreases
and since �0 > 0, no stable state with finite Acl is possible
without external dissipation.

In the quantum regime, the structure of �WW	 is de-
termined by the quantum fluctuations of the island
energy driven by inelastic tunneling processes. In this
0 2 4 6 8 10
0.05

0.04

0.03

0.02

0.01

0

0.01

A / λ

α 1

Γ = 10− 1

Γ = 10− 2

Γ = 10− 3

FIG. 2. Function �1�A� for �=� �h!� � 10�1, 10�2, 10�3.
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case, the maximum of �WW	 appears at finite A � Aq, when
the dissipation is below the critical value  1 �
max
�1�A�� x40=�2�

4
?�. In contrast to the classical regime,

Aq at low dissipation is determined by the zero of the
function �1�A� (see Fig. 2) and is still of the order of 1
even when the dissipation is zero. Despite the fact that the
amplitude of the shuttle oscillations corresponding to the
maximum of WDF is much greater then the amplitude of
the zero point oscillations, the underlying steady state can
not be interpreted as classical because the width of �WW	�A�
around Aq is no longer small compared to Aq.

The Wigner function W	 describes the state of the
vibrational degree of freedom, while W� relates to the
correlations between the charge state of the island and
the state of the oscillator. It follows from Eq. (12) that
W��A;’� � G�A;’� �WW	�A�. The WDF for the charged
island is given by W11 � 
W	 �W��=2 � N�A;’� �
�WW	�A�, where N � ĜG0�L is the occupation of the classi-

cal shuttle with an amplitude A and frequency ! [7]. The
WDF for the charged island exhibits qualitatively the
same behavior as was observed numerically in [15].

The steady-state current through the system is given by
I � eTr
�L�x��00� �

e
2

RR
dXdP�L�X�
W	 	W�� (see

[15]). Using that W	 � �WW	 and W� � G �WW	, we get

I � hIcl�A�i ; h�i � 2�
Z 1

0
dAA �WW	�A�
��; (21)

where Icl�A� � eP�L�X�ĜG0�R�X� is the time-averaged
current through the classical shuttle [7]. Therefore, the
current I is given by the classical expression Icl�A� aver-
aged over the probability distribution h�i of the ampli-
tude A. The function Icl�A� grows monotonically from the
tunneling current e�=4 at A � 0 to the shuttle current
Ishuttle � e!=�2��, which is reached already at the ampli-
tudes Ashuttle ’ 1. In the classical regime the distribution
is narrow and I � Icl�Acl�, where Acl is the stable limit
cycle amplitude of the classical shuttle oscillations. Thus,
in the classical regime the steady-state current is the same
as in the classical shuttle case [7]. In the quantum regime,
Aq grows (as the dissipation decreases) only as far as the
zero A0 of the function �1�A�, but since Icl�A0� � Ishuttle,
one can see that the small quantum fluctuations result in a
large shuttle current even at E � 0 (as was observed
numerically in [15]). This amplification is another mani-
festation of the mechanical instability in a nonequilib-
rium NEM-SET.

In conclusion, we have studied quantum shuttle phe-
nomena in the NEM-SET in the realistic limit, when the
electron tunneling length is much greater then the ampli-
tude of the zero point oscillations of the island. It is shown
that when the dissipation is sufficiently low, the vibra-
tional ground state of the central island is unstable. This
shuttle instability develops into the steady state corre-
166801-4
sponding to pronounced shuttle vibrations. For large elec-
trical fields between the leads this steady-state regime can
be interpreted in classical terms. At low field a new
quantum regime has been found.
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