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Fluidized Granular Medium as an Instance of the Fluctuation Theorem
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We study the statistics of the power flux into a collection of inelastic beads maintained in a fluidized
steady state by external mechanical driving. The power shows large fluctuations, including frequent
large negative fluctuations, about its average value. The relative probabilities of positive and negative
fluctuations in the power flux are in close accord with the fluctuation theorem of Gallavotti and Cohen,
even at time scales shorter than those required by the theorem. We also compare an effective
temperature that emerges from this analysis to the kinetic granular temperature.
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shown [8] for a chain of anharmonic oscillators to pro-
duce the Green-Kubo formula for thermal conductivity.

These attributes of our experimental system allow us to
make a very substantive test of the result in Eq. (1).
Take a fistful of marbles in your hand and shake them
vigorously. In order to maintain the motions of the mar-
bles, you will have to continuously supply enough energy
to them to replenish the energy they lose when they
collide inelastically with each other. This is unlike a state
of thermal equilibrium, where equal amounts of heat flow
into and out of the system of particles to the thermal bath
that sets the temperature of the system. All fluctuations
in the equilibrium state are given by the appropriate
calculation within the canonical ensemble. When this
equilibrium state is perturbed slightly (for instance, by
connecting the system between two heat baths at slightly
different temperatures), the fluctuation-dissipation theo-
rem specifies the linear response of the system in terms of
the equilibrium fluctuations. No equivalent framework
currently exists for large departures from equilibrium.
However, a recent theorem due to Gallavotti and Cohen
[1,2] takes an important step in this direction. Inspired by
an observation made in a simulation of a sheared hard-
sphere fluid [3], they proved a very general result regard-
ing the entropy flux into a system maintained in a
nonequilibrium steady state by a time-reversible thermo-
stat. If dynamics in the system are chaotic [4], then

�����=������ � exp�����; (1)

where ����� is the probability of a fluctuation of ampli-
tude �� in the rate of entropy production, computed over a
time � that is much longer than any microscopic time
scale of the system.

The fluctuation theorem (FT), embodied in Eq. (1)
above, is a remarkably strong statement, with no adjust-
able system-dependent parameters. The significance and
realm of validity of this result are being explored theo-
retically in various directions. The theorem has been
shown to be true under Langevin dynamics [5,6], thus
broadening greatly the range of applicability of systems
from only Hamiltonian systems. The theorem has been
shown to be equivalent to the fluctuation-dissipation theo-
rem in the limit of small forces [7]. The FT has also been
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Recent work [9] also shows the connection between the
FT and a new thermodynamic identity [10] that relates
equilibrium free energy differences to nonequilibrium
work. Thus, while Eq. (1) may at first sight appear to be
a rather formal mathematical relationship, it has a very
nontrivial physical significance.

Explicit realizations of the FT have been demonstrated
in simulations of sheared fluids [3], in electrical conduc-
tivity in an array of fixed scatterers [11], in shell models
of turbulence [12], in a model of a granular medium, and
in a Burridge-Knopoff–type block-spring model [13].
Clear experimental demonstrations of the FT have not
previously been achieved, but the two previous attempts
have been very instructive in the diffculties involved.
Goldburg et al. [14] studied the fluctuations in electrical
current required to maintain in steady state a liquid-
crystal film driven into chaotic convectional motion by
a constant transverse voltage. No direct test of Eq. (1) was
possible due to the fact that negative fluctuations in power
are exceedingly rare in a macroscopic system. Ciliberto
and Laroche [15] studied temperature fluctuations in a
Rayleigh-Benard cell arguing that the temperature var-
iations at a point in a chaotic flow are representative of the
heat fluxes to which the FT applies; they sidestep the
difficulty of measuring negative power fluctuations en-
countered in [14] by using as the variable � the local
temperature minus the mean temperature in the cell. They
find that the ratio on the left side of Eq. (1) is indeed
exponential in the amplitude of the fluctuations, but their
results are less conclusive on the � dependence.

Informed by these previous studies, we are led to
consider in this Letter a granular medium made up of
macroscopic spherical beads in which we are able to
directly measure energy fluxes. Since granular systems
typically contain much fewer particles than molecular
systems, and since relevant experimental situations are
often strongly driven nonequilibrium states, these fluxes
naturally undergo large fluctuations, including the nega-
tive fluctuations that play an important role in the FT.
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We make measurements of power fluctuations in the
geometry sketched in Fig. 1. Spherical glass beads (di-
ameter d � 1:6 mm; mass m � 5:24 mg) are held in a
rectangular cage in the vertical plane and agitated
strongly by vertical vibrations. For the measurements
we report here, the frequency and amplitude of vibration
are held fixed at 60 Hz and 2:6d. We take video frames
every 0.5 ms from which the instantaneous positions of
the particles are determined to a precision of 0:025d, and
their velocities are thence inferred. We measure the time
dependence of the total energy and fluxes into a subsys-
tem defined by the window indicated by dashed lines in
Fig. 1. We quantify the power P�t� sustaining the dynam-
ics in this subsystem by finding the sum of two measured
quantities. The first is the work done on the particles by
gravity, which we obtain from the difference in potential
energy of the particles in the window from one frame to
the next; this has a zero time average. The second, and
much larger, term is the flux in kinetic energy through the
dashed lines in Fig. 1 due to particles entering or exiting
the window. We neglect the contributions to the P�t� from
the flux of rotational kinetic energy. We note that these
data are taken in a dilute regime (area fraction � 13:8%),
so that P�t� is well approximated by measuring only the
contribution from the streaming term, i.e., ignoring the
rare contributions to the energy flux from particles at the
edges of the subsystem that suffer collisions with par-
ticles outside the subsystem.

In the subsystem we consider, the fluctuation over a
time � of the total mechanical energy is �E � D� P,
where D is the dissipation due to inelastic collisions
between particles, and P is the power driving the sub-
system, as described above. In steady state, the time
average �E is zero, so that P�t� necessarily has a positive
time-average value, P, which must exactly balance the
time average of the dissipation D. In theoretical discus-
sions of the FT, the entropy production rate, �, is identi-
fied with the phase space contraction rate. Since this is not
an experimentally accessible quantity, we have chosen to
make a correspondence between ��t� and P�t�=Teff , where
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FIG. 1. Sketch of the experimental cell. The dashed rectangle
is a window measuring 10d� 21d, fixed in the laboratory
frame, in which we study the flux of kinetic energy.
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Teff is the effective temperature of the system. The choice
of what temperature to ascribe to the system is not ob-
vious; we can avoid this issue in constructing the left side
of Eq. (1), since it is a ratio between the probabilities of
positive and negative values of the same variable.
However, we must confront this issue in discussing the
right side, since an energy scale will be required to make
nondimensional the quantity in the exponent. We defer
this discussion to later in this Letter.

In Fig. 2, we display a sample of the time variation of
the normalized power, p�t� � P=P, to indicate that this
quantity fluctuates strongly about its mean ( �pp � 1), in-
cluding making several negative excursions. We empha-
size that the occurrence of frequent negative fluctuations
is not because we are operating at small driving forces,
close to thermal equilibrium; on the contrary, the mean
kinetic energy is on the order of 1016kBT, where T is the
ambient temperature that controls the microscopic de-
grees of freedom internal to the particles.

With p�t� being identified as the variable of interest, the
version of the fluctuation relation that we test here is

��p��=���p�� � exp�p��P=Teff�; (2)

where p� is p�t� averaged over a time �.
Before embarking on the data analysis required to test

Eq. (2), we note a few points that are relevant to the
implications of any results that emerge from such an
analysis:

(i) The dynamics in the experimental system are not
time reversible unlike [1,2] nor do they satisfy micro-
scopic detailed balance unlike the systems of [5,6].

(ii) We study an open subsystem of the entire nonequi-
librium system rather than the global power injection.
The FT is proven for global fluxes, and local versions of
Eq. (1) have not been proved except for special cases [16].

(iii) To prefigure the data analysis to follow, we find that
we are not able to satisfy the condition that � is much
greater than the dynamical time scales in the system.
However, we find that the statistics of p�t� are strongly
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FIG. 2. A sample ( � 0:6%) of the normalized power trace
for the subsystem in consideration. The horizontal line shows
the average power, �pp � 1.
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FIG. 3. Probability distribution, ��p��, of the binned power
in time bins � � 0:5, 1, 2, 4, 8, and 16 ms. The distributions are
displaced vertically for clarity. The average power for all
distributions is �pp� � 1, indicated by the dashed vertical line.
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FIG. 4. (a) ln	��p��=���p��
 versus p�P for � ranging from
0.5 to 16 ms. (b) ln	��p��=���p��
=� versus p�P (P �
356 m2 s�3). The solid line shows the slope of the collapsed
curves. A dashed line of slope 1=Tgran is drawn for comparison.
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non-Gaussian for smaller � and therefore provide a very
demanding test of Eq. (2).

In order to construct the left side of Eq. (2), we first
partition the time trace of p�t� into nonoverlapping bins
of duration � and compute the average power in these
bins, p��t� �

1
�

R
t��
t p�t0�dt0. The probability distribution

��p�� is displayed in Fig. 3 for � � 0:5, 1, 2, 4, 8,
and 16 ms for a data set constructed from a sequence of
170 000 video frames. The data show large, non-Gaussian
deviations from the mean value of �pp� � 1, with substan-
tial negative tails. The shapes of the distributions vary
with �; thus each distribution provides an independent
test of Eq. (2). As noted earlier, even with the large data
set that we consider, the values of � we are able to access
are not truly long compared to the dynamical time scales
of the system, as required by the FT. For comparison, the
mean free time is 4 ms and the time for a particle to
diffuse across the window is 10 ms. The autocorrelation
function of p�t� shows weak oscillations with a period
of 8 ms, which corresponds to the second harmonic of
the drive frequency: this is due to energy injection from
the top and bottom walls in opposite phases of the
drive cycle.

In Fig. 4(a) we show for the probability distributions of
Fig. 3 the variation of the ratio ln	��p��=���p��
 with
p�P. This ratio is a straight line, as predicted from the
exponential dependence in Eq. (2). The only deviations
from linearity are the points close to p � 0 on the � �
0:5 and 1 ms data sets. To study the � dependence implied
by the FT, in Fig. 4(b) we plot ln	��p��=���p��
=� as a
function of p�P. For all values of �, we obtain the same
slope (similar results were observed in the simulations in
Ref. [13]), and for large �, all the data sets collapse on a
line passing through the origin, as predicted by Eq. (2).
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This data collapse indicates a significant degree of agree-
ment with the FT since each of the lines derives from
differently shaped ��p��. Furthermore, the linear depen-
dence of the ordinate in Fig. 4(b) extends to values of p�P
well beyond the mean so that it seems unlikely that the
linearity is merely the leading order behavior in a more
complicated functional dependence on p�.

Finally, we consider the slope of the lines in Fig. 4(b);
as discussed earlier, had we used the rate of entropy flow
into the system these lines are predicted to have a univer-
sal slope of unity. With our choice of variable, viz., the
power flux, the lines in Fig. 4(b) have a slope with the
dimension of an inverse energy/mass, which should be
given by the inverse of the effective temperature, Teff ,
of the system. Teff bears no relation to the ambient tem-
perature. A plausible candidate for a temperature scale,
however, is the so-called ‘‘granular temperature’’ Tgran �
1=2hv2i, a purely kinetically defined temperature that we
have previously studied [20,21] in the same experimental
geometry. The dotted line in Fig. 4(b) has a slope of
1=Tgran: Teff and Tgran are clearly unequal. To study how
they are related to one other, in Fig. 5 we display the
variation of Teff and Tgran as a function of the number of
particles in the cell, keeping all other parameters of the
driving mechanism fixed. As the number of particles
increases, Tgran decreases due to an increased rate of
inelastic collisions. (We make use of the fact that the
slopes of the lines in Fig. 4(b) do not depend on �, and
we plot only the values of the slope for � � 1 ms, for
which more modest statistics are suffcient.) As can be
seen, Teff and Tgran differ in magnitude by about a factor
164301-3
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FIG. 5. Teff (left axis), defined as the inverse of the slope in a
graph such as Figure 4(b), and Tgran (right axis), the granular
temperature (1=2hv2i), as a function of area fraction. Teff is
numerically larger but follows a similar trend.
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of 5; however, they both decrease similarly as the number
of particles is varied.

Prior to the proof of the FT presented in [1,2], an even
stronger statement was proven by Evans and Searles [17]
in which they showed that Eq. (1) was true at all �. This
statement, however, applies only to systems that start in
equilibrium and are perturbed by a time-independent
force. A recent experiment [18] on a colloidal particle
pulled through a fluid by an optical trap tests this transient
fluctuation theorem by examining an integral version of
Eq. (1). The transient fluctuation theorem of Evans and
Searles, however, is not expected to apply to the nonequi-
librium steady states that we probe here [19,22]. The fact
that Eq. (2) appears to hold at small � in our experimental
situation should be viewed as a characteristic of the
structure of nonequilibrium stationary states that is spe-
cific to fluidized granular media.

As discussed earlier, the experimental system is not an
idealized instance of the FT: the conditions of time
reversibility or detailed balance do not obtain in the
experiment, the variable p�t� is not an entropy generation
rate, we study only a small, open subsystem rather than
the entire system, and we are not able to go to extremely
long time scales. Despite this, we find excellent agreement
between our results and the predictions of the FT. This
gives hope that these ideas can be extended to some
situations where the conditions of proof are not met.
The interpretation of the effective temperature in this
analysis remains an open question [23]. We speculate
that Teff is potentially valuable in regimes where the
granular temperature is no longer expected to be useful.
164301-4
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