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Coherence Properties of Guided-Atom Interferometers
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We present a detailed theoretical investigation of the coherence properties of beam splitters and
Mach-Zehnder interferometers for guided neutral atoms. We show that such a setup permits coherent
wave packet splitting and leads to the appearance of interference fringes for both single-mode and
thermal input states, evidencing thus the robustness of the interferometer.
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dinal direction. Beam splitters are achieved by crossing
tions and a highly nonadiabatic dynamics for typical
initial momenta of the atomic wave packet. These effects
The investigation and exploitation of the wave proper-
ties of atomic matter is of great interest for fundamental
as well as applied research and constitutes, therefore, one
of the most active research areas in atomic physics and
quantum optics. Of special interest is the field of atom
interferometry [1]. For an interferometer, it is crucial that
the beam splitters and mirrors are coherent, i.e., they
must not disturb the phase of the matter wave in an
uncontrollable fashion. Then a phase shift in one of the
paths results in a change of the output signal, and any
external influence inducing a phase shift is, in principle,
accessible to measurement. Compared to light interfer-
ometry, matter wave interferometry with cold atoms of-
fers a much higher sensitivity for certain applications [1].
Furthermore, atoms couple efficiently to a wider variety
of external interactions, thus extending the applicability
of interferometric measurements [1].

With the use of guided atoms [2– 4], miniaturized
setups for matter wave interferometry with increased
stability, large beam separation, and large enclosed areas
become possible [4–7]. These features are specifically
appealing to measurements of inertial forces [8] and to
the investigation of Bose-Einstein condensates in micro-
structures [9]. In order to assess the level of performance
that can be reached with realistic setups, coherence and
interference (also for mixed input states) as well as non-
perfect beam splitters have to be investigated in detail.

In this Letter we study guided-atom interferometers by
solving numerically the time dependent Schrödinger
equation for realistic, experimentally accessible configu-
rations. Our study addresses the main issues of atom
propagation in guides, as well as coherence and interfer-
ence using X-shaped guided-atom beam splitters [2–
4,10]. Our calculations are closely related to the scheme
in which neutral atoms are guided in dipole potentials.
These potentials are created by microfabricated cylindri-
cal lenses which focus laser light into arrays of line foci
[4,11]. For light detuned below an atomic resonance (i.e.,
red detuned) each line focus creates a guiding structure
for atoms with Gaussian confining potentials in the two
transverse directions and a flat potential in the longitu-
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two line foci at some angle [3,4]. The splitting of the
atomic wave packet is done in coordinate space without
affecting the internal state. Nevertheless, internal state
selective interferometry is also possible. Many of the
experimental prerequisites of this scheme such as atom
guides, beam splitters, and even geometries composing a
complete Mach-Zehnder interferometer for atoms have
been realized already [4].

During the splitting process the system might exhibit
quantum reflections and tunneling between adjacent
guides. We demonstrate, however, that such a beam split-
ter is coherent even for a thermal distribution of atoms
with an average energy far exceeding the level spacing of
the transverse confinement.

To study the properties of the beam splitter and the
interferometer we use the split-operator method to solve
numerically the time dependent Schrödinger equation
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where the potential V�x; y� includes the guiding potentials
and any other potential considered in the calculation. For
simplicity, we shall assume throughout this paper that the
atomic wave packet is tightly confined in the third di-
mension so that the dynamics is well described within a
two-dimensional treatment.

The central element of any interferometer is the beam
splitter. Consequently, we start our discussion with a de-
tailed analysis of an X-shaped guided-atom beam splitter
(BS) created by crossing two identical waveguides Li and
Lj at an angle 
:

UBS�x;y��Ui�x;y��Uj�xcos
�ysin
;ycos
�xsin
�:

Each waveguide consists of a Gaussian potential of depth
U0 and width � centered around some x0: Ui�y; x� �
�U0 exp���x� x0�

2=2�2�. Coupling from one guide to
the other occurs for any angle 
 � 90	. We observe,
however, that the doubling of the potential depth at the
crossing of the two waveguides induces quantum reflec-
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FIG. 1. Schematic view of a Mach-Zehnder interferometer
for guided atoms using four identical waveguides crossing at
an angle 
. The initial atomic wave packet is represented by a
dot in waveguide L1 below the first beam splitter (BS1). The
location of the phase shift potential ~UU�x; y� is also depicted.

FIG. 2. Splitting efficiency of guided-atom beam splitter:
transmitted (T) (circles) and deflected (D) (triangles) fraction
of the incoming wave packet as function of the initial trans-
verse state ’n of the waveguide for 
 � 45	. Solid symbols
correspond to py � 10pr and open symbols to py � 5pr.
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are clearly undesirable for interferometry. For a micro-
optical realization of the waveguides, they can be easily
avoided by reducing the light intensity at the crossing
through overlay of an absorptive mask or by adding a
compensating extra potential (e.g., a blue detuned laser
field) so that the depth of the total potential at the crossing
is equal to the one of each waveguide alone. In our
simulations we have taken into account that this compen-
sation might not be perfect.

Our choice of parameters closely matches the relevant
experimental parameters of Refs. [4,11] where 85Rb atoms
are guided in dipole potentials, far detuned below the
5S1=2 ! 5P3=2 transition (780 nm). An appropriate ex-
perimental configuration could consist of waveguides of
width � � 0:54 �m (corresponding to a Gaussian beam
with 1=e2 waist w0 � 1:1 �m) at a laser wavelength of
830 nm and an intensity of I � 1:1� 105 W=cm2 (less
than 1 W of required laser power). Then the potential
depth is U0 � 75 �K, the ground state vibrational fre-
quency ! � 160� 103 s�1, and the spontaneous scatter-
ing rate �S � 2:6 s�1 (thus it can be neglected in our
discussion).

In our simulations we assume as input an atomic wave
packet located in one of the waveguides (L1 in Fig. 1) at a
typical distance of 2:5 �m from BS1. The initial atomic
wave packet has a Gaussian profile along the longitudinal
direction of the waveguide with a mean momentum py
and a spread of�py. Values of the mean momentum are in
the range of 5–10 recoil momenta pr (pr �

���������������
2 �hm!r

p
,

!r � 24� 103 s�1), with a momentum spread �py �
2pr. In general, the initial transverse state of the atomic
wave packet can be described by a thermal mixture

� �
1

Z
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e�En=kBTj’nih’n j; (2)

where j’ni denotes the nth eigenstate of the guiding
potential U�x�, En denotes its energy, and Z ensures
proper normalization. Assuming an atomic sample at a
163201-2
temperature of T � 20 �K our set of parameters leads to
a mean quantum number of h n i ’ 16.

The splitting of the initial wave packet depends on its
initial transverse state, its initial longitudinal momentum
py � mvy, and on the angle 
 between the guides. In
order to achieve efficient deflection in the beam splitter,
the atomic wave packet has to spend enough time at the
intersection. Defining the crossing time as tc � �=vy
efficient splitting requires tc * �h=En. For a fixed angle

 and a fixed initial momentum py, we observe that the
dependence of the splitting ratio on the initial transverse
state j’ni is very strong. This is displayed in Fig. 2, where
we plot the fraction of atoms transmitted towards BS2 (T)
and the fraction deflected towards BS3 (D) as a function
of the initial transverse state for 
 � 45	 and two differ-
ent initial longitudinal momenta, py � 10pr and py �
5pr. To ‘‘count’’ the number of deflected (transmitted)
atoms we use an absorbing box in L3 (L1) after the beam
splitter and integrate the loss of norm in each box with
time. The transmitted and deflected fraction do not al-
ways add up to unity. The missing fraction consists of
atoms backscattered into the downward sections of wave-
guides L1 and L3. For py � 10pr, an approximately 50=50
splitting ratio occurs for transverse initial states with
quantum numbers n ’ 8–11. Losses due to backscattering
are very small in this case. For py � 5pr the optimal
splitting ratio occurs for n ’ 2–3 although losses are
now significantly higher (i.e., 40% transmitted, 30% de-
flected, and 30% losses for n � 3). In both cases, the
deflected fraction is narrowly peaked around its maxi-
mum evidencing that even for thermal input states, effi-
cient splitting occurs only for a narrow group of states
around the optimal one. Notice also that the waveguide
ground state (�0 � j’0ih’0 j) splits extremely inefficient.
The following simple picture helps to understand the
selection of the optimal state j’ni for a given initial
momentum py and angle 
: At the intersection, the
wave packet is no longer confined transversely and,
163201-2



FIG. 3. (a) Atom fraction (in % of the input atom number) in
the top output versus the strength d of ~UU�x; y� for � �
j’0ih’0 j. (b) Same as (a) (circles) and the signal for an
optimized geometry (stars).
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therefore, expands according to its initial transverse mo-
mentum distribution. Optimal splitting occurs for typical
transverse momenta px �

������������
2mEn

p
fulfilling px ’ py tan
.

Approximating the center of the waveguide by a har-
monic potential of frequency ! one obtains the estimate
nopt ’ p

2
ytan

2�
�=�2m �h!�. Lower transverse states can be
made optimal by lowering py and/or lowering 
. A lower
nopt also implies fewer states within the peak of non-
negligible splitting ratios thus enhancing the filtering
effect of the beam splitter. Despite the simplicity of the
argument, it agrees well with our results depicted in Fig. 2
and with our simulations for different initial longitudinal
momenta py and angles 
. Only for angles 
 � 25	 we
find strong deviations from our estimate since there back-
scattering and tunneling start to play an important role in
the splitting dynamics.

The coupling between transverse and longitudinal de-
grees of freedom in the splitting process results in a
complex dynamics after the beam splitter. We calculate
the longitudinal phase profile of each wave packet before
it reaches the next beam splitter. The transmitted wave
packet propagates along the waveguide L1 almost without
distortion and its phase profile agrees well with the phase
profile of a wave packet propagating freely in a transverse
harmonic potential [12]. The motion along L3 is more
involved. Although the overall behavior of the phase
resembles the one of the wave packet along L1, even for
a single-mode input initial state, the wave packet prop-
agating along L3 exhibits transverse oscillatory motion of
frequency!. This is caused by the excitation of a coherent
superposition of transverse states and clearly demon-
strates that the splitting process is nonadiabatic. Such
motion has to be taken into account to optimize the
efficiency of the full Mach-Zehnder interferometer.

The full interferometer is realized by appropriately
crossing four identical waveguides. Because of numerical
limitations, we constrain the distance between L1 and L2
to about 7 �m [13]. Atoms loaded in the waveguide L1
with initial momentum py propagate to the first beam
splitter BS1 and are then guided through L1 and L3 to-
wards BS2 and BS3, respectively. Here BS2 and BS3 act as
mirrors, but due to the additional output ports also estab-
lish new loss channels. Note that this Mach-Zehnder con-
figuration is not symmetric even for 50=50 beam splitters,
since, as we have already discussed, the dynamics in the
different arms of the interferometer becomes distinct
after the first beam splitter. Hence following splitting
processes in the two arms are no longer equivalent. This
lack of symmetry excludes the possibility of achieving
100% visibility (defined as the amplitude [i.e., 1=2 (max-
min)] of the modulation in the top output divided by the
average in the top output) and demands optimization
strategies to improve the visibility.

To demonstrate that coherence is preserved during the
propagation through the full interferometer, we calculate
the output signals after the final beam splitter BS4 as a
function of the depth d of an additional potential
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~UU�x; y� � �dU0e
��x�~xx0�2=2�2e��y�~yy0�2=2�2 which is in-

serted in one of the arms of the interferometer (between
BS3 and BS4) to induce a phase shift between both arms.
This extra potential, which can be either attractive or
repulsive depending on the sign of d, has a Gaussian pro-
file along the waveguide and smoothly lowers (d > 0) or
increases (d < 0) the potential depth of that part of the
waveguide. Our results are summarized in Figs. 3 and 4.
Clear periodic modulations (interference fringes) in the
number of atoms exiting each output port (labeled top and
side outputs for clarity) appear as a function of d for both
single-mode (Fig. 3) and thermal initial state (Fig. 4).

For the single-mode case, we choose, for simplicity,
the ground state with mean longitudinal momentum py �
10pr and momentum spread �py � 2pr as initial state. In
Fig. 3(a), we display the fraction of atoms at the top
output versus d. The expected modulation of the atom
number as a function of d is clearly visible. We compare
the period of the oscillation with the one obtained using a
simplified model of the phase shift % introduced by the
additional potential ~UU using the classical action S �R
dtL, where L is the Lagrangian. Despite the oversim-

plification of this model, the calculated period is only a
few % too small for low values of d. For larger d the
increase in the oscillation period is more accurately de-
scribed using a WKB approximation.

For the ground state case, the total atom number exit-
ing both outputs of the interferometer is only �1% of the
initial atom number (typically 104 atoms in experiments)
and the visibility is low (�2%) since the ground state
splits very inefficiently. Better visibilities can be achieved
by choosing as input the state with the optimal split-
ting ratio (c.f. Fig. 4) and using an optimized geometry.
An optimized geometry aims at equalizing as much
as possible the contributions from both arms of the inter-
ferometer to the final signal. This can be accomplished
by choosing the distance between the waveguides L1 and
L2 such that the wave packet that propagates in L3 with
transverse oscillations enters the beam splitter BS3 with
a mean transverse momentum appropriate to maxi-
mize the fraction of atoms deflected towards BS4. This
163201-3



FIG. 4. Atom fraction (in %) in the side (triangles) and
top (circles) outputs versus the strength d of ~UU�x; y�. Solid
symbols correspond to the (optimal) input state n � 2, open
symbols to an initial thermal state at T � 20 �K.
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optimization immediately leads to a visibility of �7% as
shown in Fig. 3(b).

Experimentally, a more realistic scenario corresponds
to an initial wave packet with a thermal occupation of
transverse states [Eq. (2)]. For this case, we calculate the
final output signal as a classical (Boltzmann) weighted
average of the signal obtained for each transverse state
j’ni separately. In our calculations, we now use an opti-
mized geometry but also consider, that the compensation
of the double potential in the beam splitters is not perfect
by allowing a 5% mismatch in potential depth at the
beam splitters. Figure 4 displays the interference fringes
for an initial state corresponding to all atoms in the
optimal splitting state � � j’2ih’2 j (c.f. Fig. 2) and for
a thermal (multimode) state corresponding to T �
20 �K. In both cases py � 5pr, �py � 2pr, and 
 �
45	. Since the beam splitter is state selective, interference
fringes are mostly due to states with a good splitting ratio
as evidenced by the fact that maxima and minima appear
approximately at the same positions in both cases. The
combined atom number for the optimal state is about
24% of the initial atom number, with visibilities up to
15%. (Visibilities up to �23% can be obtained for � �
j’1ih’1 j but with a lower total signal). For the thermal
initial state the different splitting ratios corresponding to
the different transverse states lower the total output sig-
nal to �17% but with visibilities up to 10%. This clearly
demonstrates the persistence of coherence and interfer-
ence even for thermal input states and allows for the
operation of the interferometer as a multimode device.
In fact, compared to the zero temperature case (ground
state), a thermal state which inherently contains the
optimal state will dramatically improve the performance
of the interferometer.

In summary, our simulations provide strong evidence
of the feasibility of guided-atom interferometry. We have
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shown that an X-shaped beam splitter created by appro-
priately crossing two identical waveguides (with the dou-
bling of the potential properly compensated) preserves
coherence and acts analogously to a ‘‘color filter,’’ select-
ing only a few optimal transverse states which contribute
to the final signal. In this way coherence is robustly pre-
served throughout the interferometer and temperature is
not necessarily a limitation for the observation of inter-
ference fringes. Obviously, experimental noise (such as
statistics in the atom number) will reduce the observable
fringe visibility, but with predicted visibilities as high as
15% the experimental observation of interference fringes
will be feasible.
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