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Traces of Thermalization from pt Fluctuations in Nuclear Collisions
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Scattering of particles produced in high energy nuclear collisions can wrestle the system into a state
near local thermal equilibrium. I illustrate how measurements of the centrality dependence of the mean
transverse momentum and its fluctuations can exhibit this thermalization.
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when dynamic fluctuations are small compared to statis-
tical fluctuations �2 � hp2

t i � hpti
2 [2,10].

FIG. 1. (a) Dynamic pt fluctuations computed using (6) com-
pared to STAR data [1]. (b) Same for PHENIX data [2].
Fluctuations of the net transverse momentum have
recently been measured, with the STAR, PHENIX,
NA49, and CERES experiments reporting substantial
dynamic contributions [1–4]. Such fluctuations can pro-
vide information on collision dynamics and, perhaps, the
QCD phase transition [5,6]. Preliminary PHENIX and
STAR data in Au� Au collisions show that pt fluctua-
tions increase as centrality increases [1,2]. Importantly,
data from these same experiments exhibit a strikingly
similar increase in the mean transverse momentum hpti, a
quantity unaffected by fluctuations [7,8].

I ask whether the approach to local thermal equilib-
rium can explain the similar centrality dependence of hpti
and pt fluctuations. My focus is on fluctuations, to de-
velop the appropriate theoretical tools and experimental
observables. Dynamic fluctuations are characterized by
the observable h�pt1�pt2i analyzed by STAR [1], where it
is termed �2

hpti; dynam
, and CERES [3]. For particles of

momenta p1 and p2, one defines

h�pt1�pt2i �
Z

dp1 dp2
�2�p1;p2�

hN�N � 1�i
�pt1 �pt2; (1)

where �pti � pti � hpti, h� � �i is the average over events,
and dp 	 dyd2pt. This definition exploits the relation of
event-by-event fluctuations to inclusive correlation func-
tions discussed in [9]. The pair distribution is

�2�p1;p2� � dN=dp1dp2; (2)

where
R
�2dp1dp2 � hN�N � 1�i for multiplicity N [9].

Observe that (1) depends only on the two-body correlation
function

r�p1;p2� � �2�p1;p2� � �1�p1��1�p2� (3)

with �1�p� � dN=dp, since the integral over �1�1 van-
ishes due to the definition of �pt. Alternative fluctuation
observables 
pt

, Fpt
, and ��pt

proposed in [1,2,5] mea-
sure many-body correlations of all orders. These quanti-
ties are roughly equivalent:

Fpt

 
pt

=� 
 ��pt
=� 
 Nh�pt1�pt2i=2�

2; (4)
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STAR measurements of pt fluctuations in Fig. 1(a)
show an increase for low multiplicities corresponding to
peripheral collisions at s1=2 � 130 GeV [1]. PHENIX
measurements at 200 GeV in Fig. 1(b) also show such an
increase for Fpt

[2]. The increase appears to peak and
possibly saturate for multiplicities corresponding to mid-
peripheral impact parameters. In addition, the data may
show a decrease for ��pt

and Fpt
for the most central

collisions. While these measurements are preliminary
and bear large uncertainties, this centrality dependence
has already been attributed to phenomena associated with
the QCD transition [11,12].

I attribute the trend in Fig. 1 to the onset of ther-
malization in increasingly central collisions, motivated
by a similar behavior of the measured hpti in Fig. 2 [7,8].
Thermalization occurs as scattering between particles
produced in the collision drives the system toward
local thermal equilibrium. The system is characterized
by a phase-space density f�x;p; t� that varies from
2004 The American Physical Society 162301-1
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FIG. 2. Average pt from (5) compared to data [8].
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collision event to event. As the system approaches local
equilibrium, the event-averaged hfi tends toward the
Boltzmann-like distribution hfei that varies in spacetime
through the temperature T�x; t�. I show here that thermal-
ization alters the average transverse momentum following

hpti � hptioS� hptie�1� S�; (5)

where S is the probability that a particle escapes the
collision volume without scattering. Dynamic fluctua-
tions depend on two-body correlations and, correspond-
ingly, are described by

h�pt1�pt2i � h�pt1�pt2ioS
2 � h�pt1�pt2ie�1� S�2: (6)

The initial quantities hptio and h�pt1�pt2io are deter-
mined by the particle production mechanism, while
hptie and h�pt1�pt2ie depend on the state of the system
near local equilibrium.

To understand how thermalization can cause the com-
mon trends in Figs. 1 and 2, observe that as centrality is
increased the system lifetime increases, eventually to a
point where local equilibrium is reached. Consequently,
the survival probability S in (5) and (6) decreases from
unity as the impact parameter decreases. Both (5) and (6)
peak for impact parameters near the point where equi-
librium is established. The behavior in collisions at cen-
tralities beyond that point depends on how subsequent
hydrodynamic evolution changes hptie and h�pt1�pt2ie as
the system size and lifetime increase. Systems formed in
the most central collisions can experience cooling that
reduces (5) and (6).

For both the average pt and its fluctuations to increase
during thermalization as in Figs. 1 and 2, both hptie and
h�pt1�pt2ie must exceed the initial values. For the aver-
age transverse momentum, this implies that the tempera-
ture T at thermalization must be quite high, since
hptie / T. A value hptio 
 350 MeV near that measured
in pp collisions implies T � 400 MeV, suggesting that
partons contribute to thermalization.

In the following paragraphs, I estimate h�pt1�pt2io and
h�pt1�pt2ie. Next, I formulate a nonequilibrium approach
capable of treating fluctuations based on the Boltzmann-
Langevin equation in the relaxation-time approximation.
162301-2
Here, I sketch the derivation of (5) and (6), leaving the
details for a longer paper.

Transverse momentum and particle density fluctua-
tions arise partly due to the particle production mecha-
nism, e.g., string fragmentation. These fluctuations were
measured in proton-proton (pp) collisions. To use these
pp results to estimate h�pt1�pt2io for nuclear collisions, I
apply the wounded nucleon model to describe the soft
production that dominates hpti and h�pt1�pt2i. The
charged particle multiplicity N and other extensive quan-
tities are assumed to scale linearly with the number of
participant nucleons M, while the intensive one-body
observable hpti is independent of M. Centrality is deter-
mined by N=Nmax 
 M�b�=M�0� for impact parameter b,
averaged over collision geometry.

To estimate the initial h�pt1�pt2i using the wounded
nucleon model, I follow the appendix in Ref. [9] to obtain

h�pt1�pt2io �
2h�pt1�pt2ipp

M

�
1� Rpp

1� RAA

�
: (7)

The term outside the parentheses is expected because (1)
measures relative fluctuations and, therefore, should scale
as M�1; note that pp collisions have two participants. The
term in parentheses accounts for the normalization of (1)
to hN�N � 1�i 	 hNi2�1� RAA� rather than hNi2. From
[9], the robust variance RAA satisfies

RAA �
Z

dp1 dp2
r�p1;p2�

hNi2
�

hN2i � hNi2 � hNi

hNi2
; (8)

and scales as RAA / M�1. ISR measurements imply
h�pt1�pt2ipp=hpti

2
pp 
 0:015 [13]. HIJING gives Rpp �

0:45 and RAA � 0:0037 for central Au� Au for the rapid-
ity interval �� � 1:5 studied in [1]. To compare (7) to
Nh�pt1�pt2i=hpti

2 in Fig. 1(a), I assume central collisions
produce N 
 825 charged particles in �� � 1:5; i.e.,
dN=d� 
 550.

Near local thermal equilibrium, dynamic fluctuations
occur because initial state fluctuations result in transient
spatial inhomogeneity that can survive thermalization.
The inhomogeneity would eventually disappear due to
diffusion and viscosity, but can be observed if freeze-
out is sufficiently rapid. Inhomogeneity is essential for
dynamic fluctuations, since h�pt1�pt2i and 
pt

would
otherwise vanish for �2 � �1�1.

To see how inhomogeneity can survive thermalization,
observe that local equilibrium is achieved when the aver-
age phase-space distribution of particles within a small
fluid cell hfi relaxes to the local equilibrium form hfei.
The time scale for this process is the relaxation time ��1

discussed later. In contrast, density differences between
cells must be dispersed by transport from cell to cell. The
time needed for diffusion to disperse a dense fluid mass of
size L� �jrnj=n��1 is td � �L2=v2

th, where vth � 1 is the
thermal speed of particles. This time can be much larger
than ��1 for a sufficiently large fluid mass. The rapid
162301-2
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expansion of the collision system further prevents inho-
mogeneity from being dispersed prior to freeze-out.

Inhomogeneity produces spatial correlations: It is more
likely to find particles together near a dense fluid mass.
These spatial correlations entirely determine the phase-
space correlations when the momentum distribution at
each point is thermal. I write

r�p1;p2� �
Z

dx1 dx2 P �x1;p1;x2;p2; t� (9)

evaluated at the freeze-out proper time �F, where the
phase-space correlation function is

P 12 	 hf1f2i � hf1ihf2i � �12hf1i; (10)

for �12 � ��x1 � x2���p1 � p2�. A small change in den-
sity �n will initially drive the system from equilibrium
by an amount �fe � fe�n=n. The corresponding phase-
space correlations are described near equilibrium by

P e
12 �

hfe1i
hn1i

hfe2i
hn2i

r�x1;x2�; (11)

where the spatial correlation function is

r�x1;x2� 	 hn1n2i � hn1ihn2i � �12hn1i: (12)

The form (11) ensures that both P e
12 and r�x1;x2� vanish

in global equilibrium, where particle number fluctuations
obey Poisson statistics. I use (1) and (9)–(12) to find

h�pt1 �pt2ie �
Z

dx1 dx2 r�x1;x2�
�pt�x1��pt�x2�

hN�N � 1�i
;

(13)

where the local transverse momentum excess, �pt�x� �R
dp�pt � hpti�f�x;p�=n�x�, vanishes if the collision vol-

ume is uniform.
To estimate h�pt1�pt2ie using (13), I assume that

Bjorken scaling holds and that longitudinal and trans-
verse degrees of freedom are independent. I then write the
transverse coordinate dependence of (12) as

r�x1;x2� / g�rt1�g�rt2�c�jrt1 � rt2j�; (14)

where the density is n�x1� / g�rt�. I parametrize g
and c to be Gaussian with root-mean-square widths Rt
and ", respectively, the transverse radius and correla-
tion length. The momentum excess �pt�x� in (13) de-
pends on the temperature profile of the system, sinceR
ptf�x;p� dp=n�x� / T�rt�. Similarly, hpti / kTk, for

the density-weighted average kTk 	
R
g�rt�T�rt� drt,

so that

�pt�rt� � hpti�T̂T�rt� � 1�: (15)

I parametrize T̂T�rt� � T�rt�=kTk as Gaussian of width Rp
and use n / T3 to fix Rp �

���
3

p
Rt.

The dynamic pt fluctuations near local equilibrium
then satisfy
162301-3
h�pt1�pt2ie � F
hpti

2RAA

1� RAA
; (16)

where RAA is given by (8). The quantity F is dimension-
less and depends on the ratio of the correlation length "t
to the transverse size Rt. I use (14) and (15) to compute

F � kc�jrt1 � rt2j��T̂T�rt1� � 1��T̂T�rt2� � 1�k; (17)

a double density-weighted average over rt1 and rt2. I find
F � 0:046 for "t=Rt � 1=6. To determine (16) for
Fig. 1(a), I take RAA � 0:0037 and N 
 825 as before. I
emphasize that the HIJING RAA value builds in fluctua-
tions from resonance decay and, moreover, is roughly
consistent with measured net charge fluctuations [14].

Let us now describe the fast local relaxation of the
phase-space density f to fe. I start with a Boltzmann-like
kinetic equation,

@f=@t� vp � rf � I�f� 
 ���f� fe�; (18)

approximating the collision term I�f� using a single re-
laxation time ��1. Following [15,16], I use longitudinal
boost invariance to write the left side of (18) as df=d� at
fixed pz�. Longitudinal expansion further implies that
the density satisfies n��� / ��1, while hptie / T / ��&

for 0<&< 1=3; see [16]. I then multiply both sides of
(18) by jptj and integrate over momentum to obtain

hpti � hptioS�
(hpti

0
e

(� &
�S&=( � S�: (19)

The survival probability is

S � e
�
R

�F
�0

����d�

 ��0=�F�

(; (20)

where � � h�vrelin���, ( � �0�0 for the formation time
�0, the scattering cross section is �, and vrel is the relative
velocity. For relevant values ( � &, I approximate (19)
by (5) with hptie 
 hpti

0
e��0=��

&.
To compute the evolution of h�pt1�pt2i, I obtain re-

laxation equations for P . Fluctuations due to scattering
and drift are described by adding a Langevin force to the
right side of (18) [17]. On a discrete phase-space lattice
pi;xi, the Boltzmann-Langevin equation is

dfi=d� � ���fi � fei � � )i; (21)

where )i��� is a Langevin force. To incorporate the ef-
fect of fluctuations near local equilibrium, I further treat
fei as a stochastic variable subject to an additional
Langevin force, so that dfei =d� � *i, plus a diffusive
relaxation term that I need not specify for a diffusion
time scale td � ��1. The Langevin terms satisfy
h)i���)j��

0�i���f�fe��ij�����0� and h)i���*j��
0�i�

��fe�ij�����0�, as required by detailed balance for
the relaxation-time collision term [17]. The Boltzmann
equation used to compute hpti is the mean value of (21).

I use standard methods [17] to obtain the following
two-body relaxation equations:
162301-3
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dP ij=d� � �2�P ij � ��Cij � Cji�; (22)

dCij=d� � ��Cij � �P e
ij; (23)

where I introduce the auxiliary function Cij 	 hfif
e
j i �

hfiihf
e
j i. Observe that P ij � Cij � 0 in global equilib-

rium where the time derivatives vanish. I solve (22) and
(23) assuming that Cij initially vanishes and obtain
h�pt1�pt2i from (1), (3), and (9). Equation (6) follows,
but is exact only if one neglects the time dependence of
(16) implied by hptie / ��&. For ( � &, I approximate
this dependence in (6) by taking h�pt1�pt2ie / ��2&.

I now fit this transport framework together with my
earlier assertion that near-equilibrium pt correlations are
induced by spatial inhomogeneity, i.e., Eq. (11). In the
relaxation-time approximation P e is arbitrary, as is fe. To
deduce either from transport theory, one must use (21)
with the full collision term I�f�. Following [17] yields
P e

12 � hfe1ihf
e
2i,, where , � a12 �

P
.�b

.�
12 p

.
1 p

�
2 , for a

and b.� functions of x1 and x2. In a uniform system these
coefficients are constant, so that (1), (3), and (9) imply
h�pt1�pt2i 	 0, confirming our intuition. Our physically
motivated (11) takes , 
 r�x1; x2�=n�x1�n�x2�, which is
adequate for our estimate (16).

Calculations in Figs. 1 and 2 illustrate the common
effect of thermalization on one-body and two-body pt
observables. Equation (6), together with the computed (7)
and (13), is in good accord with data. The solid curves in
all figures are fit to STAR fluctuation data and hpti data
(except for N, I ignore any energy dependence). I assume
( � 4 and & � 0:15 in central collisions, and parame-
trize S�M� by taking ( / M1=3 and �F � �0 / M1=2. In
this Letter, it is not necessary to specify whether the
equilibrating system is partonic or hadronic. That said,
in Fig. 2 I take the same ( for all species, as appropriate
for parton scattering. Measurements of pt fluctuations for
identified particles can further test whether thermaliza-
tion is species independent.

In comparing to PHENIX data in Fig. 1(b), note that
the magnitude difference with Fig. 1(a) follows from the
different acceptance of STAR and PHENIX. The solid
curve in Fig. 1(b) agrees with the data within the uncer-
tainty, but the dashed curve shows better agreement for
& � 0:2 and �F � �0 / M. While agreement with hpti
data for the new parameters is less compelling than
Fig. 2, results still fall within the uncertainty.

Preliminary data from Refs. [1,2,7,8] show tantalizing
similarity to the calculations. However, experimental
uncertainty must be reduced to firmly establish the low
multiplicity rise as well as the behavior at high multi-
plicity. Contributions to hpti and h�pt1�pt2i not included
in this exploratory work are diffusion, collective radial
flow, Bose-Einstein (HBT) correlations, and collective
hadronization. Collective effects can be important in
central collisions, where the matter evolves after equili-
bration. Flow can enhance the fluctuations, while diffu-
sion can reduce them. HBT effects can be experimentally
162301-4
estimated by cutting on each pair’s relative momentum.
This contribution is of order 10% at RHIC energy [18] but
may be larger at lower energies [3]. While resonance and
hard-scattering contributions to fluctuations are esti-
mated by taking RAA in (7) and (16) from HIJING,
chemical equilibration may modify the centrality depen-
dence for resonance production, altering h�pt1�pt2i.

Experimental indications that nuclear collisions pro-
duce matter near local equilibrium are scant and cir-
cumstantial. Any experimental evidence of the onset of
equilibrium — particularly at the parton level — will
validate those indications. Rapidity dependence measure-
ments can distinguish the thermalization effects proposed
here from alternative explanations [11,12]. Here, the ra-
pidity dependence arises from the dependence of (7) and
(16) on RAA, which is itself measurable [9].

I thank C. Pruneau, S. Voloshin, and G. Westfall for
discussions. This work was supported in part by the U.S.
Department of Energy under Grant No. DE-FG02-
92ER40713.
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