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Simplified Test of Universality in Lattice QCD
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A simplified test of universality in lattice QCD is performed by analytically evaluating the
continuous Euclidean time limits of various lattice fermion determinants, both with and without a
Wilson term to lift the fermion doubling on the Euclidean time axis, and comparing them with each
other and with the zeta-regularized fermion determinant in the continuous time–lattice space setting.
The determinant relations expected from universality considerations are found to be violated by a
certain gauge field-dependent factor; i.e., we uncover a ‘‘universality anomaly.’’ The physical signifi-
cance, or lack thereof, of this factor is a delicate question that remains to be settled.
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maining coordinates discrete. In this Letter we evaluate tinuous time–lattice space setting. The Dirac operator in
The low-lying spectrum of the naive lattice Dirac
operator approximates the low-lying spectrum of the
continuum Dirac operator but with a 16-fold degeneracy
due to fermion doubling [1]. Lattice QCD (LQCD) with a
naive fermion is therefore regarded as a regularization of
continuum QCD with 16 degenerate fermion flavors.
Lattice QCD with a staggered fermion [2] is regarded
as a regularization of four flavor QCD, in accordance with
the fact that one naive fermion flavor is equivalent after
spin diagonalization to four staggered fermion flavors [3].
Lattice QCD with a Wilson fermion [1], where theWilson
term is added to the naive fermion action to lift the
fermion doubling, is regarded as a regularization of
QCD with a single fermion flavor. Implicit in this is a
universality hypothesis: the LQCD’s with naive fermion,
staggered fermion, and Wilson fermion are all in the right
universality class to reproduce continuum QCD, the only
difference being in the number of continuum fermion
flavors the different lattice fermion formulations describe.

It is highly desirable to test this universality hypothesis
wherever possible. This is particularly important in view
of the fact that LQCD calculations with both dynamical
Wilson and staggered fermions are currently being pur-
sued at great effort and expense [4]. An interesting quan-
tity to consider in this context is the fermion determinant,
which appears in the QCD functional integral when the
fermions are dynamical. In LQCD with dynamical stag-
gered fermions, the fourth root of the staggered fermion
determinant is used as the fermion determinant for a
single quark flavor. An important test of the universality
hypothesis is therefore to check whether the fourth power
of the Wilson fermion determinant coincides with the
staggered fermion determinant in the continuum limit
or, equivalently, whether the 16th power of the Wilson
determinant coincides with the naive fermion determi-
nant in this limit. Such a test appears analytically impos-
sible with currently known techniques though. However, a
simplified version of this test is feasible: instead of the
full continuum limit one can take the continuum limit for
one of the spacetime coordinates while keeping the re-
0031-9007=04=92(16)=162002(4)$22.50 
the continuous Euclidean time limits of the various lattice
fermion determinants, both with and without the time
part of the Wilson term in the action, and compare them
with each other and with the zeta-regularized fermion
determinant in the continuous time–lattice space setting.

On a finite spacetime lattice, with N� sites along the
Euclidean time axis, a the time lattice spacing, a0 the
spatial lattice spacing, � � aN� the time length (inverse
temperature in the finite temperature QCD setting), we
consider lattice fermion actions of the form S �
a�a0�3

P
�x;��  �x; ��D

�r� �x; ��, where �x; �� runs over the
lattice sites and
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For r � r0 � 0 this is the naive fermion action, while for
r � r0 � 0 it is the Wilson action. We shall evaluate the
continuous time limit (a! 0, N� ! 1 with � � aN�
held fixed) of the fermion determinants detD�r�

a at r � 0
and r � 1 and compare them with each other and with the
zeta-regularized fermion determinant det�D� in the con-
2004 The American Physical Society 162002-1



P H Y S I C A L R E V I E W L E T T E R S week ending
23 APRIL 2004VOLUME 92, NUMBER 16
the latter setting is

D � 
4

�
d
d�

� A4

�
�Dspace �m; (7)

with A4�x; �� being the 4-component of a smooth contin-

uum gauge field such that U4�x; �� � Te
R

1

0
aA4�x;���1�t�a	 dt

(T � t ordering) is the lattice transcript. The subscripts
‘‘�’’ in D�r�

� and D� refer to the operators defined by
replacing U4 ! e��aU4 in (1)–(6) and A4 ! A4 � � in
(7), respectively. The role of the complex parameter � is
to incorporate the effect of a general boundary condition
(BC) at the time boundaries:D�r�

� (D�) with periodic time
BC has the same spectrum and determinant as D�r� (D)
with time BC  �x; �� � e�� �x; 0�. Thus, the introduc-
tion of � allows us to always take periodic time BC when
considering the fermion determinant. It can also be used
to incorporate a chemical potential �: QCD at finite
temperature and density, where the fermion fields satisfy
antiperiodic time BC, corresponds to � � �� i�=�.
The gauge fields are required to satisfy periodic time
BC. The spatial BC’s for the fermion and gauge fields
do not play a role in our considerations and are left
unspecified.

The term r
2a�4 in (1) is the ‘‘time part’’ of the usual

Wilson term. It lifts the fermion doubling on the
Euclidean time axis when r � 0. Therefore, if we think
of the continuous time–lattice space setting as the ‘‘con-
tinuum setting,’’ then the aforementioned universality
hypothesis, which relates the continuum limits of the
naive, staggered, and Wilson fermion determinants,
translates into the simplified universality hypothesis:

lim
a!0

detD�0�
� � �lim

a!0
detD�r�

� �2r�0 �modPIFs�; (8)

where PIFs refers to physically inconsequential factors.
This is now something that can be checked analytically.
Our main technical result in this Letter is

lim
a!0

detD�0�
� � �lim

a!0
detD�1�

� �2e�
R
�

0
Tr� r

0

2a0
�space���	 d�

�modPIFs�; (9)

where �space��� is defined on the space of lattice spinor
fields  �x�, living only on the spatial lattice, by replacing
 �x; �� by  �x� in (6). The PIFs in (9) are gauge field-
independent factors whose only effects are to produce
constant (vacuum) shifts in certain physical quantities.
They include inverse powers of a, which diverge in the
a! 0 limit.

The result (9) reveals a ‘‘universality anomaly’’: the
exponential factor in the right-hand side violates the
universality expectation (8). Thus, it is important to as-
certain the significance, or lack thereof, of this factor.
Since it is gauge field dependent, it cannot, strictly speak-
ing, be regarded as a PIF in the continuous time–lattice
space theory. However, since the spatial Wilson term
r0
2a0 �space formally vanishes in the spatial continuum limit,
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one could argue that the exponential factor is effectively a
PIF when one goes on to take that limit. This is a delicate
issue though, since Tr 1

2a0 �space actually diverges in the
a0 ! 0 limit (the largest eigenvalue of 1

2a0 �space is 
 1
a0 ).

Further study is required to clarify this issue.
Since the reasoning that leads to the universality ex-

pectation (8) is the same as that which leads to the
expectation that LQCD with naive, staggered, and
Wilson fermions are all in the same universality class,
Eq. (9) is a potential reason for concern about whether the
latter universality hypothesis really holds. It would there-
fore be a significant reassurance if the anomaly factor in
(9) can be shown to be physically inconsequential. It
should be noted, however, that even if this turns out not
to be the case, it would not in itself invalidate the uni-
versality hypothesis for LQCD with naive, staggered, and
Wilson fermions, since the comparison between naive
fermion (r � r0 � 0) and Wilson fermion (r � r0 � 0)
is not covered by (9), and we could still be lucky in this
case. But it would certainly raise a serious concern.

Remarkably, the anomaly in (9) is mirrored by an
ambiguity in the zeta-regularized fermion determinant
in the continuous time–lattice space setting. The latter
can be expressed either as det�D� or det� �
4D�� (since
 �  �
4). Formally, the determinants of D� and 
4D�
coincide, but it turns out that the rigorously defined zeta
determinants do not. In fact, we find det� �
4D�� �

e�
1
2

R
�

0
Tr� r

0

2a0
�space���	 d�det�D� (modPIFs), and

lim
a!0

detD�1�
� � det�D� �modPIFs�;

lim
a!0

detD�0�
� � det� �
4D��

2 �modPIFs�:
(10)

This shows that the lattice regularizations are consistent
with zeta regularizations of the fermion determinant in
the continuous time–lattice space setting, and that the
requirement that the anomaly factor in (9) be physically
inconsequential is also necessary for consistency of con-
tinuous time–lattice space QCD when the fermion deter-
minant is defined by zeta regularization.

In the remainder of this Letter we sketch the derivation
of (9) and (10) and give other, more explicit, expressions
for the a! 0 limits of detD�0�

� and detD�1�
� . The full de-

tails are provided in [5]. It is convenient to regard  �x; ��
as a function ���� living on the lattice sites of the
Euclidean time axis and taking values in the vector space
W � f �x�g, i.e., the space of lattice spinor fields living on
the spatial lattice only. Set N :� dimW. Define the linear
operator U4��� on W by �U4��� ��x� � U4�x; �� �x�. The
operator Dspace��� on W is defined similarly by replacing
 �x; �� by  �x� in (4)–(6). Since ���� � ��0� we can
represent � by the vector �̂� � ��̂��0�; . . . ; �̂��N� � 1��
where �̂��k� � ��ka�. Then D�r� is represented by

D̂D �r��̂��k� � d�r��1�k��̂��k� 1� � d�r�0 �k��̂��k�

� d�r�1 �k��̂��k� 1�; (11)
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where the operators d�r�j �k�:W ! W are given by d�r�1 �k� �
1
2a �
4 � r�ÛU4�k�, d�r��1�k� � � 1

2a �
4 � r�ÛU4�k� 1��1,

d�r�0 �k� � r
a� D̂Dspace�k� �m with ÛU4�k� :� U4�ka� and

D̂Dspace�k� :� Dspace�ka�. The generalization of D̂D�r� to

D̂D�r�
� , given by U4 ! e��aU4, is equivalent to d�r��1 !

e��ad�r��1 in (11). After writing D̂D�r�
� as an N� � N� ma-

trix, its determinant can be straightforwardly evaluated
via the method of [6]. The cases r � 1 and r � 1 require
separate treatments due to the fact that d�r��1�k� is invertible
when r � 1 but not when r � 1. The details of the cal-
culation are provided in [5]; here we simply quote the
results, assuming for convenience that N� is even in the
r � 1 case:

detD�r�1�
� �

�
�1� r2�2

2a

�
NN�

e���N

� det

��
1 0

0 1

�
�e��ÛU�r��N�=2�

�
; (12)

detD�1�
� �

�
1

a

�
NN�

e���N=2

2
4 YN��1

k�0

det�1� aM̂M�k�	

3
5

1=2

� det�1� e��V̂V �N��	; (13)

where M̂M�k� :� r0
2a0 �̂��k� �m [i.e., the scalar part of

D̂Dspace�k� �m]. The linear maps ÛU�r��N�=2� on W �W

and V̂V �N�� on W in (12) and (13) are defined as follows.
Exploiting the periodicity of the link variables to define
d�r�j �k� for all k 2 Z, periodic under k! k� N�, and
thereby define D̂D�r��̂��k� for all k 2 Z, we consider the
equation D̂D�r��̂��k� � 0 [no periodicity requirement on
�̂��k�]. In the r � 1 case, since the d�r�� �k�’s are invertible,
it is clear from (11) that solutions �̂��k� are specified by
two initial values. Thus, the solution space is isomor-
phic to W �W. Setting �̂�1�n� � �̂��2n� and �̂�2�n� �
�̂��2n� 1� the solutions are determined from their initial

values via an evolution operator: ��̂�1�n�
�̂�2�n�

� � ÛU�r��n���̂�1�0�
�̂�2�0�

�.
The operator ÛU�r��N�=2� appearing in (12) can also be
characterized as follows: Because of the N� periodicity
of the d�r�j �k�’s in (11) there is a linear map on the solution
space defined by �̂��k� � �̂��k� N��, or, equivalently,
��̂�1�n�; �̂�2�n�� � ��̂�1�n� N�=2�; �̂�2�n� N�=2��. This

map coincides with ÛU�r��N�=2� when the solution space
is identified with W �W.

In the r � 1 case, solutions D̂D�1��̂��k� � 0 are deter-
mined by just a single initial value; this is connected with
the noninvertibility of d�1��1�k� and can be seen, e.g., from
the expression (16) below. Thus the solution space in this
case is isomorphic to W. The evolution operator V̂V �k�
determines solutions from their initial value through
�̂��k� � V̂V �k��̂��0�. The V̂V �N�� in (13) can be alterna-
162002-3
tively characterized as the linear map on the solution
space that maps �̂��k� � �̂��k� N��.

Finite difference approximations to differential opera-
tors in one variable and their determinants have been
studied in [7,8] and we are going to use a convergence
result from there. In the setting of [7,8], specializing to
first order differential operator, the operator L and its
finite difference approximation L̂L have the forms

L � L1���
d
d�

� L0���; L̂L � L̂L1�k�
1

a
@� L̂L0�k� (14)

��2R; k2Z�@2 f@�; @�g, @��̂��k� � �̂��k� 1�� �̂��k�,
@��̂��k� � �̂��k� � �̂��k� 1�, with Lj���; L̂Lj�k�:W ! W
being periodic under �! �� �, k! k� N�, respec-
tively, and

L̂L j�k� � Lj�ka� �O�a� �j � 0; 1�: (15)

Then the solutions to L���� � 0 and L̂L �̂��k� � 0 are both
determined by a single initial value, so the solution spaces
in both cases are isomorphic to W. Solutions �̂� approxi-
mate solutions �̂�, i.e., if �̂��0� � ��0�, then �̂��k� �
��ka� for small a. Consequently, the evolution operator
ÛU�k� for L̂L �̂� � 0 approximates the evolution operator
U��� for L��0. [Explicitly, U����Te�

R
�

0
L1�t��1L0�t�dt.]

In particular, one has (cf. Sec. 3 of [8]) the convergence
theorem: ÛU�N�� ! U��� for a! 0 with aN� � � held
fixed. An obvious variant of this that we make use of is
the following. If p is a multiple of N� and L̂L � L̂L1

1
pa @�

L̂L0 with the L̂Lj�k�’s periodic under k! k� N�=p and
satisfying L̂Lj�k� � Lj�kpa� �O�a� (j � 0; 1), then
ÛU�N�=p� ! U��� for a! 0. Furthermore, if W is re-
placed byW1 �W2 in the preceding, then the convergence
theorem continues to hold when @ is replaced by �@0

0
~@@�

with @; ~@@ 2 f@�; @�g.
In order to apply the convergence theorem to evalu-

ate the a! 0 limits of (12) and (13) we need to rewrite
D̂D�r� in the form of L̂L in (14), or its aforementioned vari-
ant. We have been able to do this only in the r � 0 and
r � 1 cases. The problem of evaluating lima!0 detD

�r�
�

in the general r case therefore remains for future
work; new techniques beyond those of [7,8] may be
required for this. In the r � 1 case we specialize to a 

representation where 
4 � �10

0
�1� and decompose W �

W� �W� so that 
4 � �1 on W�. Then, in terms of this
decomposition,

D̂D �1� � L̂L�1�
1

1

a

�
@� 0
0 @�

�
�L̂L�1�

0 ; (16)

where

L̂L�1�
1 �k� � 
4

�
U4��k� 1�a��1 0

0 U4�ka�

�
;
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L̂L�1�
0 �k� � 
4

� 1
a�1�U4��k� 1�a��1	 0

0 1
a�U4�ka� � 1	

�

�Dspace�ka� �m:

Clearly L̂L�1�
j �k� is periodic under k! k� N� and

L̂L�1�
1 �k� � 
4 �O�a�;

L̂L�1�
0 �k� � 
4A4�ka� �Dspace�ka� �m�O�a�:

The convergence theorem now gives lima!0 V̂V �N�� �
V ���, where V ���, acting onW, is the evolution operator
for D���� � 0 withD being the Dirac operator (7) of the
continuous time–lattice space setting. Using this and
noting det�1� aM̂M�k�	 � eaTrM̂M�k� �O�a2�, the a! 0
limit of (13) is now obtained:

lim
a!0

detD�1�
� �

�
1

�

�
NN�

e���N=2�
1
2

R
�

0
TrM��� d�

� det�1� e��V ���	: (17)

The gauge field-independent factor 1=aNN� , which di-
verges in the a! 0 limit, is physically inconsequential;
it can at most give rise to an overall constant shift in the
calculation of certain physical quantities (such as the
energy density in finite temperature QCD).

An application of the zeta-regularized determinant
formula for differential operators in one variable,
Theorem 1 of [7], leads to an expression for det�D� that
coincides with (17) without the 1=aNN� factor and with
M��� replaced by �M��� (the details of this are given in
[5]). The sign � depends on the choice of cut in the
complex plane used to define the zeta determinant.
Choosing this so that the sign is ‘‘�’’ we then have
lima!0a

NN� detD�1�
� � det�D�, which establishes the first

part of (10).
In the r � 0 case, with �̂� represented by

��̂�1�n�; �̂�2�n�� as before, we have

D̂D �0� � L̂L�0�
1

1

2a

�
@� 0
0 @�

�
�L̂L�0�

0 ; (18)

where

L̂L�0�
1 �n� �

�
0 
4U4��2n� 1�a��1


4U4��2n� 1�a� 0

�
;

L̂L�0�
0 �n� �

�Dspace�2na� �m K̂K0�n�

ĴJ0�n� Dspace��2n� 1�a��m

�
;

ĴJ0�n� � 
4
1

2a
�U4�2na� �U4��2n� 1�a��1	;

K̂K0�n� � 
4
1

2a
�U4��2n� 1�a��U4�2na��1	:

Clearly L̂L�0�
j �n� is periodic under n! n� N�=2 and
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L̂L�0�
1 �n� �

�
0 
4


4 0

�
�O�a�;

L̂L�0�
0 �n� �

�Dspace�2na� �m 
4A4�2na�


4A4�2na� Dspace�2na� �m

�
�O�a�:

(19)

The convergence theorem then gives lima!0 ÛU�N�=2� �
U���, where U���, acting on W �W, is the evolution
operator for ~DD��1

�2
���� � 0 with

~DD �

�
Dspace��� �m 
4�

d
d�� A4����


4�
d
d�� A4���� Dspace��� �m

�
: (20)

Introducing O � � 1
�1

1
1� on W �W, we find after a

little calculation O�1 ~DDO � ��
4
5�
�1D�
4
5�
0

0
D�, where D

is the Dirac operator (7). It follows that U��� �
O�1��
4
5�

�1V ����
4
5�
0

0
V ����O. Using this, the a! 0 limit

of (12) is now obtained:

lim
a!0

detD�0�
� �

�
1

2a

�
NN�

e���N det�1� e��V ���	2:

(21)

Again there is a physically inconsequential, divergent
factor, �1=2a�NN� . Comparing (21) with (17), and noting

that e
1
2

R
�

0
TrM��� d� � em�N=2e

1
2

R
�

0
Tr� r

0

2a0
�space���	 d�, where

em�N=2 is a PIF, we obtain the claimed result (9).
Furthermore, an application of Theorem 1 of [7] gives
det� �
4D�� � e��1�1���N=2 det�1� e��V ���	 where the
sign � again depends on the choice of cut in the complex
plane [5]. It follows that lima!0�2a�

NN� detD�0�
� �

e���Ndet� �
4D��
2. Since e���N is a PIF, this establishes

the second part of (10).
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