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Capitalizing on recent advances in lattice QCD, we present a calculation of the leptonic decay
constants fBs

and fDs
that includes effects of one strange sea quark and two light sea quarks via an

improved staggered action. By shedding the quenched approximation and the associated lattice scale
uncertainty, lattice QCD greatly increases its predictive power. Nonrelativistic QCD is used to simulate
heavy quarks with masses between 1:5mc and mb. We arrive at the following results: fBs

� 260� 7�
26� 8� 5 and fDs

� 290� 20� 29� 29� 6 MeV. The first quoted error is the statistical uncer-
tainty, and the rest estimate the sizes of higher order terms neglected in this calculation. All of these
uncertainties are systematically improvable by including another order in the weak coupling expansion,
the nonrelativistic expansion, or the Symanzik improvement program.
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The removal of quenched artifacts permits a more
precise study of systematic effects in lattice QCD simu-

smaller than experiment when the lattice spacing is set
by �2S� 1S�. With statistical errors between 1%–2%,
We present the first complete calculation of the Bs and
Ds decay constants with three flavors of sea quarks with
small masses. The Ds decay constant, fDs

, has been
measured [1,2], and the CLEO-c experiment promises
to reduce the experimental errors significantly [3]. The
comparison of experimental and lattice results will be a
vital test of lattice QCD. The Bs and Bd decay constants,
fBs

and fBd
, are necessary in order to constrain Vtd via

B0 � B0 mixing. Since fBs
will not be determined

through direct measurement, an accurate lattice calcula-
tion is crucial for improving phenomenological tests of
CKM unitarity.

The calculation presented below makes use of lattice
Monte Carlo simulations, done by the MILC Collabo-
ration [4], which include the proper sea quark content: one
dynamical strange quark and two flavors of dynamical
quarks with masses as light as ms=4. The correct number
of flavors is necessary in order for the lattice theory to
have the same  function as real QCD. Only then can we
expect, in principle, lattice results to agree with experi-
mental measurements.

Inclusion of light up and down sea quarks is essential
for accurate lattice phenomenology. The innovation which
allows this on present computers is an improved staggered
discretization of the light quark action [5–12]. The so-
called ‘‘fourth-root trick’’ is used to simulate three-flavor
QCD using a staggered fermion action. Despite some
open theoretical issues concerning staggered fermion al-
gorithms, results of improved staggered fermion calcu-
lations are free of ambiguities present in quenched
simulations and agree very well with chiral perturbation
theory, provided the u and d sea quark masses are light
enough [13,14].
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lations. Reference [12] presents lattice results for a
variety of ‘‘gold-plated’’ quantities, those for which re-
moval of lattice uncertainties is straightforward, such as
f� and fK, and several splittings in the  spectrum. The
change from nf � 0 results, which differ substantially
from experiment, to nf � 3 results, which agree with
experiment up to the 3% lattice uncertainties, suggests
that gold-plated quantities can reliably be calculated with
improved staggered fermion simulations. Heavy-light
pseudoscalar leptonic decay constants fit into the gold-
plated category.

Our calculation of fBs
and fDs

uses standard lattice
QCD methods. Correlation functions were computed us-
ing a subset of gauge field configurations generated by the
MILC Collaboration. The configurations include the ef-
fects of two dynamical light quarks with equal bare mass,
denoted by msea

‘ , and one dynamical strange quark, with
bare mass msea

s . The lattices we used have spacings of
about 1=8 fm and volumes of about �2:5 fm�3 � 8:0 fm.
We focus on the configurations where msea

‘ =msea
s � 1=5

and 2=5. As we discuss below, the physical strange quark
mass, ms, obtained from the light hadron spectrum is
actually 4=5 of msea

s , so the light sea quark masses are
approximately ms=4 and ms=2.

Details of the Monte Carlo simulations which gener-
ated the ensemble of gauge fields are given in [3]. In this
Letter we use a level splitting in the  spectrum, e.g., the
�2S� 1S� splitting, to determine the lattice spacing,
instead of the length scale r1, derived from the static
quark potential, which was used in [3]. The  spectrum
will be presented in detail in a future publication [15];
however, we note here that as the light sea quark mass is
increased, the �1P� 1S� splitting becomes slightly
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TABLE II. Simulation results for "Hs
� fHs

���������mHs

p for each
light sea quark mass and heavy quark mass. The second column
lists the leading order term "LO � �1� #s ~$$0�"

�0�, The third
and fourth columns show the contributions of J�1�0 , with respect
to "�0�, before and after the power law subtraction. The fifth
column gives the result for "Hs

. Statistical and fitting uncer-
tainties are quoted in parentheses (not including the statistical
uncertainty in 1=a).

msea
‘ =ms � 1=4

aM0 "LO(GeV3=2) "�1�="�0� "�1;sub�="�0� "Hs
(GeV3=2)

2.8 0.640(11) �9:0�4�% �3:7�4�% 0.614(13)
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the difference between experiment and lattice values for
the 1P� 1S splitting is 0�, 1�, and 2� for msea

‘ =ms �
1=4, 1=2, and 3=4, respectively. Except for estimating sea
quark mass effects, we use the msea

‘ =ms � 1=4 lattice to
obtain our results.

The analysis of [3] has also been updated with respect
to determining the quark mass corresponding to the
physical strange quark mass sector. Rather than using
�sss mesons which are either unstable (the �) or do not
exist (the pseudoscalar) we use the results of the partially
quenched chiral perturbation theory analysis of mK and
m� and take the bare value of ms from fits to � and K
masses and decay constants [13,14]. The result is that the
msea

s is heavier than the physical strange quark mass by a
factor of 5/4. The valence strange quark mass is set equal
to the physical value.

A nonrelativistic action which is correct through
O��2

QCD=m
2
Q� is used for the heavy quark, with coeffi-

cients set to their tree-level values. Table I lists the bare
heavy quark masses used in this Letter, along with the
corresponding nonrelativistic QCD (NRQCD) stabiliza-
tion parameter n. For each mass, we estimate the heavy-
light meson mass two ways: the ‘‘kinetic mass’’ mkin

Hs
is

extracted from finite momentum correlators using the
meson dispersion relation, and the ‘‘perturbative mass’’
mpert

Hs
is estimated from the zero momentum correlator and

the one-loop heavy quark mass renormalization. We find
that the bare heavy quark mass aM0 � 2:8 produces the
correct experimental mass for the  [16] and the Bs
within statistical errors.

When we construct correlation functions for heavy-
light mesons, we use the equivalence between staggered
and naive fermion propagators. The operators we use are
the same ones as with Wilson-like discretizations or in
the continuum limit. This method for computing the Bs
mass and decay constant has been presented, along with
tests on quenched lattices, in recent work [17].

The Bs decay constant is defined through the axial
vector matrix element; h0jA�jBs�p��i � fBs

p�. Here we
use only the temporal component. Up through O�1=M0�
three lattice operators contribute to A0, the leading-order
current, J�0�0 � q"5"0Q, and two subleading currents
J�1�0 � q"5"0 ���r�Q=2M0 and J�2�0 � q���r� � "5"0Q=
2M0; the matching from the lattice to the continuum is
done in perturbation theory [18]. A one-loop calculation
TABLE I. Heavy quark parameters and meson masses for
two values of the light sea quark mass.

msea
‘ � ms=4 (568 config) msea

‘ � ms=2 (468 config)

aM0 n mkin
Hs

(GeV) mpert
Hs

(GeV) mkin
Hs

(GeV) mpert
Hs

(GeV)
2.8 2 5.6(2) 5.3(4) 5.22(17) 5.4(4)
2.1 4 4.38(10) 4.2(3) 4.28(11) 4.3(3)
1.6 4 3.52(6) 3.5(3) 3.56(7) 3.5(3)
1.2 6 2.84(5) 2.78(19) 2.93(4) 2.83(19)
1.0 6 2.53(4) 2.41(16) 2.60(3) 2.45(16)
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yields

A0 � �1� #s ~$$0�J
�0�
0 � �1� #s$1�J

�1;sub�
0 � #s$2J

�2;sub�
0 ;

(1)

where J�1;sub�0 � J�1�0 � #s&10J
�0�
0 , and so too for J�2;sub�0 .

These operators explicitly subtract, through one loop,
the power-law mixing of J�0�0 with J�1�0 and J�2�0 [19]. The
perturbative calculation which determines ~$$0; $1; $2; &10,
and &20 will be presented separately [20].

From fits to correlation functions, we extract the com-
bination "Hs

� fHs

���������mHs

p . Let us denote by "�i� the con-
tribution of J�i�0 to "Hs

. For this calculation the matrix
elements are computed for mesons at rest, so "�1� � "�2�.
Table II summarizes fits to the numerical data, converted
to physical units using 1=a � 1:59�2� GeV for the msea

‘ �
ms=4 lattice and 1=a � 1:61�2� GeV for the msea

‘ � ms=2
lattice. [The quoted uncertainties come from statistical
and fitting uncertainties in the �2S� 1S� splitting [15].]
By comparing "�1�="�0� with "�1;sub�="�0� one can ob-
serve the sizable power-law mixing of J�0� with J�1�. The
expression (1) absorbs the mixing back into the term
proportional to J�0�, so "�1;sub�="�0� represents the physi-
cal contribution of 1=M0 terms to "Hs

up to two-loop
corrections. The 4% contribution from the 1=M0 operator
we see for the Bs (aM0 � 2:8) is the same size seen in
quenched studies over a range of lattice spacings [19].

Figure 1 shows the heavy quark mass dependence of
"Hs

on mHs
(plotted as squares). The data are fit well by

"Hs
� "stat

Hs

�
1�

C1

mHs

�
C2

m2
Hs

�
(2)
2.1 0.598(10) �11:7�4�% �5:0�4�% 0.565(11)
1.6 0.557(8) �14:7�4�% �6:4�4�% 0.516(9)
1.2 0.519(7) �18:3�4�% �7:8�4�% 0.470(8)
1.0 0.499(6) �20:7�4�% �8:6�4�% 0.445(7)

msea
‘ =ms � 1=2

aM0 "LO(GeV3=2) "�1�="�0� "�1;sub�="�0� "Hs
(GeV3=2)

2.8 0.640(15) �8:9�6�% �3:6�6�% 0.615(14)
2.1 0.599(11) �11:4�6�% �4:7�6�% 0.567(12)
1.6 0.563(7) �14:2�5�% �5:9�5�% 0.523(9)
1.2 0.528(6) �17:7�5�% �7:1�5�% 0.481(6)
1.0 0.510(6) �20:0�5�% �7:9�5�% 0.459(6)
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FIG. 2. Dependence of "Hs
on the light sea quark mass. The

upper data points correspond to the Bs (aM0 � 2:8) and the
lower points come from our lightest heavy quark mass, aM0 �
1:0. The different symbols indicate which quantity was used to
set the lattice spacing: octagons use the �2S� 1S� splitting
and diamonds use the �1P� 1S� splitting. Error bars repre-
sent combined statistical uncertainties of 1=a and a3=2"Hs

.

FIG. 1. Squares show "Hs
� fHs

���������mHs

p vs 1=mHs
on the

msea
‘ =ms � 1=4 lattice. The solid line shows the fit described

in the text, and the asterisk shows the value of "Hs
extrapolated

to the charm sector. Experimental values for 1=mBs
and 1=mDs

are shown as dashed vertical lines.
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with a correlated *2 per degree of freedom of 0:7=2. We
find "stat

Hs
� 0:85�4� GeV3=2, C1 � �1:82�20� GeV, and

C2 � 1:59�35� GeV2. It is instructive to note that at
O��QCD=mQ� most of the mass dependence of "Hs

comes
through the action and not through the currents. A fit to
the leading-order "LO � �1� #s$

e
0�"

�0� (Table II) yields
similar fit parameters: "stat;LO � 0:83�4� GeV3=2, CLO

1 �
�1:53�19� GeV, and CLO

2 � 1:32�32� GeV2. Since the ac-
tion is accurate through O��2

QCD=m
2
Q�, performing the

operator matching through O�1=M2
0� should yield only

small corrections to the values for "stat
Hs

, C1 listed above. If
the small effect of the 1=M0 currents can be taken as a
guide, then including the 1=M2

0 currents should have a
small effect on C2.

We use the fit above to interpolate "Hs
slightly to the

physical value of 1=mBs
. The result is fBs

� 260�7� MeV,
where the quoted statistical error combines statistical
errors from 1=a and a3=2"Bs

. Uncertainties in mkin
Hs

are
small compared to the other uncertainties in the fit.
The systematic uncertainties due to the neglect of higher
order terms are estimated by assuming coefficients of
O�1�. For example, two-loop terms omitted in (1) are
estimated to be 10% effects, taking the coupling constant

defined through the plaquette #s � #
nf�3
P �2=a� � 0:32

[21]. This is the largest systematic uncertainty. Leading
discretization errors are O�#sa2�2

QCD�, where �QCD is the
typical scale of nonperturbative dynamics. Taking 1=a �
1:6 GeV and �QCD � 400 MeV implies 2% cutoff effects.
The operator matching neglects terms O��2

QCD=m
2
b� or

approximately 1%, and the NRQCD action neglects terms
O�#s�QCD=mQ� which is about 3% for bottom quarks.
Therefore, we quote an overall 3% uncertainty due to
relativistic corrections.

Extrapolating the fit described above to the physi-
cal value for 1=mDs

requires care since higher order
162001-3
terms in 1=mHs
become increasingly important. The

fit above extrapolates to fDs
� 290�10� MeV. We use

a Bayesian analysis to estimate possible effects due
to higher order terms. Allowing terms such as Cn=mn

Hs

with n � 3 in the fit (2), with Gaussian priors
for Cn=GeVn � 0� + and + � 1� 4, we find higher
order terms could lead to a 20 MeV error in fDs

. This
is taken as the statistical and fitting uncertainty. The
O�#2

s� perturbative error and the O�#sa
2�2

QCD� discreti-
zation error are again estimated to be 10% and 2%,
respectively. For charmed mesons �QCD=mc � 1=4, so
the O��2

QCD=m
2
Q� and O�#s�QCD=mQ� corrections to the

matching are estimated to be 6% and 8%, respectively, so
we quote a combined 10% estimate of possible relativistic
corrections.

Figure 2 shows "Hs
vs light sea quark mass for two

heavy quark masses, focusing on msea
‘ � ms=2. As msea

‘
decreases to the physical up/down masses, the msea

‘ de-
pendence of "Hs

should be mild since no pion loops enter
this quantity at leading order in heavy-light chiral per-
turbation theory. Within the uncertainties of the  split-
tings used to set the lattice spacing, no sea quark mass
dependence is observed in Fig. 2. Consequently, the re-
sults for "Hs

computed with smaller values of msea
‘ would

be consistent with the msea
‘ � ms=4 points, so we use

these data points for the central values of fBs
and fDs

.
Experimental determination of the Ds leptonic decay

constant is challenging, so this is a rare case where lat-
tice QCD can lead experiment. The most recent and
precise experimental results for fDs

are 280� 17� 25�
34 MeV [1] and 285� 19� 40 MeV [2], which agree
well with the calculation presented here. Shrinking the
experimental uncertainties on fDs

is a major goal of the
CLEO-c program.

Turning to comparison with the existing literature on
lattice QCD, we quote recent world averages and com-
ment on another new result. The nf � 3 results presented
here have central values larger than lattice calculations
162001-3
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with nf � 0 or 2. For example, recent averages [22] of

quenched results are f
nf�0
Bs

� 200�20� and f
nf�0
Ds

�

230�14� MeV, significantly lower than our results. The
two flavor world averages, f

nf�2
Bs

� 230�30� and f
nf�2
Ds

�
250�30� MeV, are higher than the quenched and agree
within the quoted uncertainties.

Recently the JLQCD Collaboration reported a lattice
QCD result using two dynamical flavors of improved
Wilson fermions with mass between 0:7 and 2:9ms [23].
They quote fBs

� 215�9���0
�2��13��

�6
�0� MeV, with the first

error statistical, second from chiral extrapolation of the
sea quark mass, third from finite lattice spacing combined
with truncation of NRQCD and perturbative expansions,
and the fourth from ambiguity in setting the strange
quark mass. This calculation uses much larger quark
masses than ours, uses unstable hadron masses to set the
lattice spacing and ms, and does not include a dynamical
strange quark. Each of these effects could cause a differ-
ence from our result. For example, CP-PACS found an
approximate 15% difference in the latttice spacing deter-
mination between using m$ and the 1P� 1S  splitting
[24]. Further work will be required to determine which
combination of effects accounts for the difference with
our result.

Recent sum rule calculations agree within errors for
the Bs decay constant:, e.g., fs:r:Bs

� 236�30� MeV [25,26].
On the other hand, they do not calculate an increase in the
decay constant as the heavy quark mass decreases:, e.g.
fs:r:Ds

� 235�24� MeV [26].
To summarize, we have completed a calculation of the

Bs and Ds decay constants using three-flavor lattice QCD.
The more realistic sea quark content allows a unique
lattice spacing to be determined using one of several
quantities [13], enabling more reliable predictions. Our
final results are

fBs
� 260� 7� 26� 8� 5 MeV;

fDs
� 290� 20� 29� 29� 6 MeV:

(3)

The uncertainties quoted are, respectively, due to statis-
tics and fitting, perturbation theory, relativistic correc-
tions, and discretization effects. The result for the Ds
decay constant agrees with experimental determinations,
and the result for the Bs decay constant is a prediction.
Improvement of the lattice results requires a two-loop
perturbative matching calculation or the use of fully
nonperturbative methods. On the other hand, much of
162001-4
the perturbative uncertainty cancels in the ratio
fBs

=fBd
. Work is underway to study fBd

using the meth-
ods discussed in this Letter [27].
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