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Controlled Vortex-Sound Interactions in Atomic Bose-Einstein Condensates
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The low temperature dynamics of a vortex in a trapped quasi-two-dimensional Bose-Einstein
condensate are studied quantitatively. Precession of an off-centered vortex in a dimple trap, embedded
in a weaker harmonic trap, leads to the emission of sound in a dipolar radiation pattern. Sound emission
and reabsorption can be controlled by varying the depth of the dimple. In a shallow dimple, the power
emitted is proportional to the vortex acceleration-squared over the precession frequency, whereas for a
deep dimple, periodic sound reabsorption stabilizes the vortex against radiation-induced decay.
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to strong phase fluctuations, these effects are suppressed
in the limit of very low temperature [18,19]. In a har-

n0 � 10 cm and a chemical potential 	 � 3:5 �h!d,
a 87Rb (23Na) BEC has the harmonic oscillator length
The superfluid nature of weakly interacting atomic
Bose-Einstein condensates (BECs) supports quantized
circulation, as observed in the form of single vortices
[1], vortex lattices [2], and vortex rings [3]. Vortices are
fundamental to the understanding of fluid dynamics, sig-
naling the breakdown of ordered flow and the onset of
turbulence. Dilute atomic gases enable easy control and
observation of quantized vortices, complimenting vortex
studies in liquid helium, superconductors, and nonlinear
optics. Vortices in superfluids are subject to both thermal
and dynamical instabilities. Thermal dissipation in BECs
induces an outward motion of the vortex towards lower
densities [4]. Dynamical dissipation is evident in super-
fluids in the limit of low temperature, as manifested in
the temperature-independent crystallization of vortex
lattices in BECs [5], and the decay of vortex tangles in
liquid helium [6]. In this limit, reconnections and Kelvin
wave excitations of vortex lines lead to dissipation by
sound (phonon) emission [7,8]. Superfluid vortices are
also unstable to acceleration, in analogy to Larmor ra-
diation induced in accelerating charges. For example,
corotating pairs [9], and single vortices performing cir-
cular motion [7,10], within a two-dimensional (2D) ho-
mogeneous superfluid are predicted to decay via sound
emission. However, this decay mechanism is not expected
to occur in finite-sized BECs due to the sound wavelength
being larger than the system size [10,11].

In this Letter we show that a vortex in a trapped quasi-
2D BEC, precessing due to the inhomogeneous back-
ground density, emits dipolar sound waves in a spiral
wave pattern. The quasi-2D geometry ensures that the
vortex line is effectively rectilinear and that Kelvin wave
excitations [12,13] are negligible. This instability is
closely analogous to the decay of dark solitons in quasi-
1D BECs via sound emission due to longitudinal confine-
ment [14,15]. Quasi-2D ‘‘pancake’’ BECs have recently
been created experimentally, using tight confinement in
one dimension [16,17]. Although such systems are prone
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monic trap sound reabsorption occurs, stabilizing the
vortex (in the absence of other decay mechanisms), while,
in modified trap geometries, sound reabsorption can be
prevented for times long enough to enable the vortex
decay to be observed and probed. In the latter case, the
power radiated by the vortex is found to be proportional
to the vortex acceleration squared and inversely propor-
tional to the precession frequency.

Our analysis is based on the Gross-Pitaevskii equation
(GPE) describing the mean-field dynamics of a weakly
interacting BEC in the limit of low temperature,
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Here  is the macroscopic order parameter of the system,
m is the atomic mass, and 	 � ng is the chemical poten-
tial, where n is the atomic density. The atomic scattering
amplitude g � 4� �h2a=m, where a is the s-wave scatter-
ing length, is taken to be positive, i.e., repulsive inter-
atomic interactions. The external confining potential Vext

is given by
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and consists of a Gaussian dimple with waist w0 and depth
V0 embedded within a weaker harmonic trap. This con-
figuration can be realized experimentally by focussing a
far-off-resonant red-detuned laser beam in the center of a
magnetic trap. Close to the center, the Gaussian dimple is
approximately harmonic with frequency !d � 2

������
V0

p
=w0.

For trap parameters, !r � 2�� 5 Hz, !d � 20!r, and
!z � 200!r (we choose !z � !r to suppress excitation
in the z direction), the harmonic oscillator time is !�1

d �
1:6 ms. In this case, the time scale of dynamical insta-
bility due to sound emission is much shorter than the
expected thermodynamic vortex lifetime, which is of
the order of seconds [4]. Assuming a peak density
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FIG. 1 (color online). (a) Isosurface plot of the atomic density
(n � 0:1n0, where n0 is the peak density) of a quasi-2D BEC,
confined by the potential of Eq. (2), with a vortex at 	x0; 0
. In
the x-z plane (y � 0), white and black corresponds to high and
low density, respectively. (b) Density (solid line) and potential
(dashed line) along the x direction (y � 0,z � 0).
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FIG. 2 (color online). (a) 3D (black) and 2D (grey) energy of
an off-centered vortex, initially located at 	0:53; 0
ld, rescaled
by the initial vortex energy. V0 � 10	 (solid lines): sound
reabsorbed. V0 � 0:6	, !r � 0 (dashed lines): sound escapes.
(b) Fourier spectrum of the vortex x coordinate (dotted line)
and energy (solid line) for V0 � 10	, using the 2D GPE.

FIG. 3 (color online). Path of a vortex initially at 	0:53; 0
ld.
V0 � 10	 (solid line): mean radius is constant, but modulated
by the sound field. V0 � 0:6	, !r � 0 (dashed line): vortex
spirals outwards. Insets: Carpet plots of renormalized density
(actual minus background density) for V0 � 0:6	 at times
(i) t � 61:4 and (ii) t � 63:3 !�1

d , showing the emission of
positive (white) and negative (black) sound waves of amplitude
�0:01n0. Top: Far field ��50; 50 � ��50; 50. Bottom: Near
field ��14; 14 � ��14; 14, with schematic illustration of di-
polar radiation pattern.
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A singly quantized vortex, initially at position 	x0; y0

in the dimple (illustrated in Fig. 1), is expected to precess
around the trap center, along a path of constant potential,
as observed experimentally [20]. This can be interpreted
in terms of the Magnus force induced by the density
gradient [21,22]. However, the acceleration of the vortex
produces sound emission. By varying the depth of the
dimple, we show how this emission can be observed and
quantified. Analogous control has previously been dem-
onstrated for dark solitons [15].

The energy of a precessing vortex, for both deep
V0 � 	 and shallow V0 <	 dimples, is shown in
Fig. 2(a). The vortex energy is monitored by integrating
the GP energy functional,

E � �
�h2
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across a ‘‘vortex region,’’ defined to be a circle of radius
5� centered on the core, and subtracting off the corre-
sponding contribution of the background fluid. Although
the vortex energy technically extends up to the boundary
of the system, this region contains �50% of the total
vortex energy at all background densities considered here.

For !z � !r and providing lz � a, where lz is the
transverse harmonic oscillator length, the GPE can be
reduced to a 2D form with a modified coefficient g2D �
g=	

�������
2�

p
lz
 [18,23]. In Fig. 2(a) we compare the full 3D

GPE (black lines) with the computationally less demand-
ing 2D GPE (grey lines), where the 2D and 3D density
profiles are matched as closely as possible. The excellent
agreement justifies the use of the 2D GPE for subsequent
results.

For a deep dimple, the emitted sound waves are con-
fined to the dimple region and reinteract with the vortex,
and there is no net decay of the vortex energy. The energy
oscillations [solid lines in Fig. 2(a)] correspond to a beat-
ing between the vortex mode and the collective excita-
tions of the trapped condensate. The beating effect is
160403-2
illustrated in Fig. 2(b), where we plot the Fourier trans-
form of the vortex x coordinate (dotted line) and energy
(solid line). The two fundamental frequencies, the effec-
tive trap frequency !d and vortex precession frequency
!v, dominate the position spectrum, while the energy
spectrum highlights the beat frequencies, 	!v �!d
,
	!v �!d
, and higher order combinations. Similar beat-
ing effects are observed for a driven vortex [24], and
between a dark soliton and the dipole mode in a quasi-
1D BEC [15]. In contrast, for a shallow dimple, V0 <	,
the radiated sound escapes, and the vortex energy decays
monotonically [dashed lines in Fig. 2(a)].

In an experiment, the vortex energy can be extracted
by measuring its position. The trajectory of the vortex
for both deep (solid line) and shallow (dashed line) dim-
ples is shown in Fig. 3. For V0 � 	, the orbit is essen-
tially closed, with the vortex remaining in the effectively
harmonic region of the dimple, but features a small
modulation due to the interaction with the collective
excitations of the background fluid. In stark contrast, for
160403-2
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V0 <	, the vortex spirals out to lower densities. A simi-
lar outward motion has recently been predicted for a
vortex precessing in a harmonic trap modulated by an
optical lattice [25]. The results presented here are for a
homogeneous outer region !r � 0. Simulations for !r �

0 are essentially indistinguishable up to a time when the
sound reflects off the condensate edge and returns to the
dimple. For example, for an outer trap !r � !d=20,
the emitted sound begins to reinteract with the vortex at
t� 80!d. Following this interaction with the reflected
sound, the vortex decay is slowed down, but not fully
stabilized, due to a dephasing of the sound modes in the
outer trap. Weakly anisotropic 2D geometries yield the
same qualitative results, with vortex precession now oc-
curring in an ellipse rather than a circle. In the limit of
strong anisotropy, deviations arise as the system tends
towards the quasi-1D regime, where vortices are not
supported.

The continuous emission of sound waves during the
precessional motion is evident by a close inspection of the
surrounding density distribution during the course of
the decay (insets of Fig. 3). The waves are emitted per-
pendicularly to the instantaneous direction of motion in
the form of a dipolar radiation pattern, while the spiral-
ling motion of the vortex modifies this into a dramatic
swirling radiation distribution, reminiscent of spiral
waves often encountered elsewhere in nature [26].
The wavelength of the emitted sound �� 25ld agrees
well with the theoretical prediction of �� 2�c=!v �

21:3ld [11], where c �
�����������
	=m

p
is the speed of sound and

!v is the vortex precession frequency.
The power radiated by the vortex, in the limit of no

reinteraction with the emitted sound (V0 � 0:6	), is
shown in Fig. 4 as a function of time and radius from
the trap center. Because of constraints on the size of our
computational grid, this plot was mapped out by a few
simulations, with the vortex being started progressively
further from the trap center. This could also be imple-
mented experimentally in order to trace out the vortex
decay. The curve can be understood qualitatively by con-
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FIG. 4. Power radiated as a function of radius from the trap
center (top axis) and time (bottom axis), as calculated from the
GP energy functional (solid line). Equation (4) with � � 6:1
(dashed line). Acceleration-squared law with constant coeffi-
cient 26:6	m=!d
 (dotted line).
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sidering the density inhomogeneity that the spiraling
vortex experiences: the emitted power increases in line
with the local radial density gradient up to r � 1:4�,
where the gradient of the Gaussian potential is a maxi-
mum, and subsequently tails off as the trap gradient
decreases smoothly to zero. We have additionally consid-
ered the case where the dimple is harmonic instead of
Gaussian, and find the same qualitative results, but with
enhanced power emission for a particular !d due to the
larger precession frequency (see inset of Fig. 5). In a
harmonic trap of frequency !, the vortex precession
frequency is predicted to be !v � 	3 �h!2=4	
ln	R=�
,
where R �

�������������������
2	=m!2

p
is the Thomas-Fermi radius of

the BEC [22]. For a harmonic trap with a cutoff (V �
V0 for r > r0), the vortex frequency (inset of Fig. 5,
crosses) agrees well with this prediction. However, for a
Gaussian dimple of depth V0, !v falls short of this
prediction due to the tailing off of the Gaussian potential
with radius, as shown in Fig. 5 (inset, circles).

A 2D homogeneous superfluid can be mapped on to a
	2� 1
D electrodynamic system, with vortices and pho-
nons playing the role of charges and photons, respectively
[27]. By analogy to the Larmor radiation for an acceler-
ating charge and the power emitted from an accelerating
dark soliton in a quasi-1D BEC [15], we assume the
power radiated P by the spiralling vortex to be propor-
tional to the square of the local vortex acceleration a. The
coefficient of this relation, P=a2, has been mapped out
over a range of dimple strengths, as shown in Fig. 5. Each
data point corresponds to the best-fit power coefficient
and the average vortex precession frequency for that
simulation. Note that there are limitations to the range
of precession frequencies that we can probe, just as would
be experienced experimentally: in the limit of very tight
dimples, the vortex escapes almost instantaneously,
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FIG. 5. Coefficient of an acceleration squared power law,
P=a2, for a vortex, calculated over a variety of trap strengths
!d, as a function of !v (circles), along with the analytical
predictions [7,10] (dashed line), and best fit line corresponding
to Eq. (4) with � � 6:3� 0:86 (solid line). Here frequency is
scaled in terms of!0

d, defined by 	 � 3:5 �h!0
d. (The gradient of

the best fit line in log-log plot is found to be �1:04.) Inset:
Variation of !v with trap strength for a Gaussian dimple
(circles) and harmonic trap with a cutoff (crosses), along
with the theoretical prediction [22] (solid line, see text).
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whereas for very weak dimples, the vortex motion is too
slow for such effects to be systematically studied. The
data indicates a strong dependence on the inverse of the
!v, suggesting a modified power law of the form

P � �mn0�2
a2

!v
; (4)

where � is a dimensionless coefficient. An equation of
this form for circular vortex motion in a homogeneous
2D fluid has been obtained by Vinen [7] using classical
acoustics and by Lundh and Ao [10] by mapping the
superfluid hydrodynamic equations onto Maxwell’s elec-
trodynamic equations. Both approaches predict a rate of
sound emission proportional to !3

vr2v, where rv is the
precession radius, and yield a coefficient � � �2=2.
Despite the assumptions of perfect circular motion, a
point vortex, and an infinite homogeneous system, there
is remarkable agreement with our findings which indicate
�� 6:3� 0:9 (1 standard deviation), with the variation
due to a weak dependence on the geometry of the sys-
tem. We believe that the deviation from the predicted
coefficient arises primarily due to the radial component
of the vortex motion, which is ignored in the analytical
derivations.

Also plotted in Fig. 4, alongside the power emission
from the GP energy functional, are an acceleration-
squared law (dotted line) and the modified acceleration-
squared law of Eq. (4) (dashed line), with the coefficients
being chosen to give a best fit. Both lines give excellent
agreement until the vortex starts to escape the dimple
region at r� 1:4ld. Here the vortex frequency, which
previously remained roughly constant, starts to decrease
due to the form of the local density. This causes the
acceleration-squared law to deviate significantly, while
the 1=!v term in Eq. (4) corrects for this deviation,
giving excellent agreement throughout the decay.

Sound radiation due to acceleration may be important
in the case of turbulent vortex tangles in liquid helium,
where evidence suggests that the vortex line length L
(providing a measure of the energy of the system) decays
at a rate proportional to L2 [7]. In the limit of low
temperature, this decay is believed to be primarily due
to reconnections and Kelvin wave excitations. We note
that, for a system of many vortices, where the acceleration
is induced by the surrounding vortex distribution, Eq. (4)
would also lead to an L2 decay.

In summary, we have shown that a vortex precessing in
a trapped quasi-2D BEC at low temperature emits dipolar
radiation, which becomes modified into a spiral wave
pattern due to the motion of the vortex. The vortex energy
decays at a rate proportional to its acceleration squared
and inversely proportional to the precession frequency.
For appropriate trap geometries, the sound emission is
experimentally observable via the spiraling motion of
the vortex towards lower densities. An analogous insta-
bility may arise in the case of optical vortices, which also
160403-4
exhibit a fluidlike motion [28]. For harmonic traps the
vortex decay is stabilized by reinteraction with the emit-
ted sound.
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