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Exact Pairing Correlations for One-Dimensionally Trapped Fermions
with Stochastic Mean-Field Wave Functions
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The canonical thermodynamic properties of a one-dimensional system of interacting spin-1=2
fermions with an attractive zero-range pseudopotential are investigated within an exact approach.
The density operator is evaluated as the statistical average of dyadics formed from a stochastic mean-
field propagation of independent Slater determinants. For a harmonically trapped Fermi gas and for
fermions confined in a 1D-like torus, we observe the transition to a quasi-BCS state with Cooper-like
momentum correlations and an algebraic long-range order. For a few trapped fermions in a rotating
torus, a dominant superfluid component with quantized circulation can be isolated.
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size �x is smaller than the macroscopic physical scales. e��H=2j�ih�je��H=2 associated with the imaginary-time
Since the pioneering works [1] on the realization of
atomic Bose-Einstein condensates (BEC), a great variety
of experimental investigations has probed the macro-
scopic coherence of confined quantum gases in the super-
fluid regime. For example, by rotating an asymmetric
potential, quantized vortex and vortex lattices have
been generated in atomic condensates [2]. With the recent
progress on cooling of trapped fermionic atoms [3], one
major observation to be detected is now the predicted [4]
Bardeen-Cooper-Schrieffer (BCS) transition to a paired-
fermion superfluid state. The use of Feshbach resonance
opens up the possibility to achieve strong-coupling fer-
mionic superfluidity and the associated BCS-BEC cross-
over [5]. Because of the experimental realization of very
anisotropic trapping geometries [6], a regime of effec-
tively one-dimensional dynamics is actually attainable
[7] and the study of the peculiar properties of 1D ultra-
cold atomic gases is also a topic of growing interest [8]. In
this Letter, we investigate Cooper-pair formation in a 1D
trapped Fermi gas of two hyperfine states� � �;�.With
a delta-functional two-body interaction, exact eigenfunc-
tions can be obtained via the Bethe ansatz only for the
spatially homogeneous system [9]. Here, we perform ex-
act calculations at finite temperature of local and non-
local correlation functions in the framework of our
stochastic reformulation of the N-fermion problem with
binary interactions [10].

An interacting 1D trapped Fermi gas can be modeled
by the lattice Hamiltonian

H � �x
X
x�

��
� �x�ĥho���x�

� g�x
X
x

��
��x��

�
��x����x����x�; (1)

where the coordinates x run on a grid of an even number
N of points with periodic boundary conditions. The cell
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The field operators ���x� satisfy the anticommutation
relations ���

� �x�;��0 �x0��� � �xx0���0=�x and can be
expanded on the plane wave basis according to ���x� �P
ka��k�e

ikx=
����
L

p
, where k � 2�n=L with the integer n

running from �N=2 to N=2� 1, L � N�x being the
length of the lattice. The one-body Hamiltonian in the
confining potential U�x� is ĥho � p2=2m�U�x�, where m
is the atomic mass and p is the single-particle momentum
operator. Two-body interactions are modeled by a discrete
delta pseudopotential with a coupling constant g. The
discrete Hamiltonian (1) can also represent interacting
fermions trapped in a ring of radius R: Taking L � 2�, x
then corresponds to the azimuthal angle, p to the angular
momentum, and ĥho � p2=2mR2 ��p, where the contri-
bution ��p is specific to a trap rotating at frequency �
and described in the rotating frame. Introducing any
single-particle basis fj’�ig for each spin�, one can define
a basis of the Hilbert space with a fixed number N� of
fermions in each spin state by considering all Slater
determinants j�i � j��ij��i, where j��i correspond
to the occupation of N� states: f’�i�

� ; i � 1; . . . ; N�g.
Taking advantage of the closure relation 1 �

P
�j�ih�j,

the unnormalized canonical equilibrium density matrix
at temperature kBT � 1=� thus reads

e��H �
X
�

e��H=2j�ih�je��H=2: (2)

To optimize the exploration of the closure relation, in
actual simulations, we use the eigenbasis of the single-
particle Hamiltonian ĥho and bias the expansion (2) with
the Boltzmann factor associated with ĥho:

e��H �
X
�

e��Eo��� e
��H=2j�ih�je��H=2

e��Eo���
: (3)

We have recently shown [9] that the density matrix
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FIG. 1. Cooper pairing correlations in a 1D system of N� �
N� � 10 interacting fermions in a harmonic trap at different
temperatures kBT � 2 �h! (top) and kBT � 0:5 �h! (bottom).
Left part: Density plot of the momentum correlation function
%�k; k0�. Right part: Momentum density profiles  �k� (solid
line) normalized to unity and correlations %�k;�k� (dashed
lines) relative to their value for k � 0 [open circles, %�k; k�;
black disks, %�k;�k�].
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propagation of each state j�i can be exactly re-
constructed by the coherent average of dyadics
j�1��=2�ih�2��=2�j. The two independent Slater deter-
minants j����=2�i �� � 1; 2� result from the evolution
with a mean-field Hamiltonian supplemented with a one-
particle–one-hole Itô noise. Explicitly [9],

e��H �
X
�

e��Eo���E�eS��=2�j�1��=2�ih�2��=2�j�; (4)

with the following stochastic differential equations in
imaginary time � for the occupied single-particle orbitals

d’�i�
���x; �� � � d��h0 � g ����x; ���’

�i�
���x; ��

�Q�����
X
k<0

���������������������������������
�g

L�1� �k;��=�x�

s

� �e�ikxdZk� � H:c:�’�i�
���x; ��: (5a)

The associated phase evolves according to

dS��� � gd�
X
x��

�x ���x; �� ����x; ��=2; (5b)

and the initial conditions are

’�i�
���x; 0� � ’�i�

� �x�; S�0� � �Eo���: (6)

Here, E�� � �� denotes the ensemble average;  ���x; �� is
the spatial density associated with the unnormalized
Slater determinant j�����i. The density-dependent part
of the deterministic evolution is the self-consistent
Hartree-Fock potential. Q����� is the orthogonal projec-
tor to the Fermi sea of spin � associated with j�����i.
Writing the residual interaction as g

2

P
kn�k�n

��k�, where
n�k� is the discrete Fourier transform of

P
��

�
� �x����x�,

allows one to linearize the two-particle–two-hole exci-
tations by the introduction of complex Wiener processes
Zk� obeying to Itô rules:

E�dZk�� � E�dZk�� � 0;

dZk�dZk0�0 � dZk� dZk0�0 � 0;

dZk�dZk0�0 � �kk0���0d�:

(7)

With the Hamiltonian (1) and with single-particle
orbitals that do not mix different spin states, the reformu-
lation (4), (5a), (5b), and (6) of the fermionic many-
body problem is in fact very close to the equivalent
formalism used recently in the bosonic case [11].
Concerning fermions, the stochastic mean-field scheme
can be combined with standard quantum Monte-Carlo
algorithms where stochastic paths are generated accord-
ing to their real weight in the partition function. How-
ever, the drawback of the sign problem would not be
solved. Here we proceed in a different way by computing
separately the Boltzmann operator, with the representa-
tion (4), and its trace.

We first consider a 1D system of N� � N� � 10 har-
monically trapped fermions interacting via an attractive
160401-2
pseudopotential. The coupling constant is g � �2 �h!ao,
where ! is the trap frequency and ao �

��������������
�h=m!

p
.

Calculations were performed on a grid of N � 64 or 32
points with the lattice spacing �x � 0:25ao or �x � 0:4ao
depending on the temperature kBT � 2 �h! or kBT �
0:5 �h!. For all the thermal mean values, statistical error
bars are less than 5%. The expected development of
Cooper pairing at low-temperature clearly emerges
from the exact stochastic mean-field calculations, as
shown in Fig. 1 in terms of the following momentum
correlation function:

%�k; k0� � ha���k�a
�
��k0�a��k0�a��k�i

� ha���k�a��k�iha
�
��k0�a��k0�i; (8)

where h i is the average at equilibrium. As already ob-
served in grand-canonical calculations with small cou-
pling constants [12], only correlations at k0 � k or
k0 � �k around the Fermi surface are dominant (see
Fig. 1). The first ones reflect the formation of co-oscillat-
ing pairs of fermions in different spin states. As the
temperature decreases, these semiclassical correlations
gradually disappear and, at kBT � 0:5 �h!, the behavior
of %�k; k� reveals an anticorrelation at equal momentum.
On the contrary, correlations between spin-up and spin-
down particles, with opposite momenta in the vicinity of
the Fermi surface, grow when the temperature is lowered.
At kBT � 0:5 �h!, these correlations dominate and probe
the transition to a Cooper paired state. The quantum
coherence properties of this state can now be investigated
via the nonlocal correlation function:
160401-2
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&�x� �
X
x0
�x�h��

��x��
�
��x����x� x0����x� x0�i

� h��
��x����x� x0�ih��

��x����x� x0�i�: (9)

In the usual BCS picture, the condensation of Cooper
pairs induces a long-range order (LRO) in the system,
signaled by a nonvanishing correlation function &�x� in
the asymptotic regime x! 1. However, in reduced di-
mensions, such a scenario is generally perturbed by
quantum fluctuations that inhibit any LRO in the strict
sense at finite temperature [13]. For 1D harmonically
trapped fermions, our exact calculations reveal a similar
behavior. The results are presented in Fig. 2 where &�x� is
compared with the correlation function between spin-up
and spin-down densities:

'�x� �
X
x0
�x�h��

��x����x��
�
��x� x0����x� x0�i

� h��
��x����x�ih��

��x� x0����x� x0�i�: (10)

For kBT � 2 �h!, where Copper pairs coexist with semi-
classical correlations, the coherence function &�x� rapidly
decays to zero at a distance comparable to the pair
correlation length. In the Copper paired state obtained
at temperature kBT � 0:5 �h!, &�x� decays as a power
law with an exponent � � 1:4. In contrast to the BCS
state that always displays quantum coherence, 1D fermi-
onic paired states in a harmonic trap exhibit only an
algebraic LRO.

In a true BCS or BEC state, the long-range order
induces a superfluid behavior that can be revealed by
generating topological defects such as quantized vortices.
Moreover, as well known from bidimensional systems
undergoing a Kosterlitz-Thouless transition, a quasi-
LRO can be sufficient to ensure superfluidity. Motivated
FIG. 2. Upper part: Exact nonlocal correlation functions &�x�
and '�x� for N� � N� � 10 harmonically trapped fermions at
different temperatures kBT � 2 �h! (left) and kBT � 0:5 �h!
(right). Lower part: Comparison of the coherence function
&�x� for the two considered temperatures.
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by the famous ‘‘rotating bucket’’ experiment with super-
fluid helium liquid and by recent works on atomic con-
densates [2], we now investigate a small sample of
N� � N� � 5 interacting fermions in a ringlike trap
rotating at various frequencies �. The strength of the
�-pseudopotential interaction is g � �2 �h!, where ! �
�h=mR2 is the frequency associated with the trap. All the
calculations have been performed in the rotating frame of
reference for a temperature kBT � 0:5 �h! on a N � 16
points grid or kBT � 2 �h! with N � 32 points. The sta-
tistical error bars on the thermal mean values are less than
5%. Without rotation, low-temperature equilibrium states
display the same features as those shown in Figs. 1 and 2
for harmonically trapped fermions: dominant Cooper
pairing correlations around the Fermi surface and alge-
braic LRO (see Fig. 3). When the ring is set into rotation,
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FIG. 3. Stochastic Hartree-Fock calculations of the thermal
equilibrium state of N� � N� � 5 interacting fermions con-
fined in a rotating ring of radius R at a temperature kBT �
0:5 �h! with ! � �h=mR2. Upper part: Coherence function &�x�
and momentum correlations %�k;�k� relative to their value for
k � 0 [open circles, %�k; k�; black disks, %�k;�k�] for the
nonrotating trap. Middle part: representation of the dominant
pairing mode ��x� in the complex plane for each point x
considered as a polar angle on the ring. This vector field
representation is shown for the frequency of the rotating drive
� � 0:125; 0:25! (left) and � � 0:4; 0:5; 0:6! (right). The
different fields are indistinguishable at the scale of the figure.
Lower part: Angular frequency of rotation �� associated with
the velocity field of the principal pairing mode (left); distribu-
tion of the eigenvalues (n (relative to their sum) of the corre-
lation matrix  2 at different temperatures kBT � 0:5; 2 �h! and
for a frequency of rotation � � 0:5! (right).
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we analyze the principal pairing mode identified as the
eigenvector ��x� of the two-body correlation matrix:

 2�x0; x� � h��
��x��

�
��x����x0����x0�i

� h��
��x����x0�ih��

��x����x0�i; (11)

corresponding to the largest eigenvalue. Such a procedure
combines Yang’s definition of the order parameter for the
superfluid phase transition in macroscopic fermionic
systems [14] and the finite-size corrections introduced
for ultrasmall superconducting grains [15]. A dominant
superfluid component should manifest as an irrotational
behavior via the Hess-Fairbank effect [16] in the pairing
field ��x� when the trap is rotating slowly. Our results
are summarized in Fig. 3 and effectively confirm this
behavior: At � � 0:125; 0:25!, no rotation of the pairing
mode ��x� appears. Indeed, at this low frequency, ��x� ��������
 �

p
exp�i��x� is real in all grid points, which implies a

zero angular frequency ��. As also expected in a super-
fluid scenario, when the frequency � of the rotation drive
is increased, the mean angular momentum L� � �h��

associated with ��x� exhibits plateaus of the quantized
circulation (Fig. 3, bottom part). It is interesting to remark
that the dominant mode ��x� coexists with at least an-
other non-negligible pairing field rotating at a different
frequency (Fig. 3, bottom part). When the temperature
increases, all the pairing eigenmodes of the correlation
matrix  2 have a comparable weight and the dominant
superfluid behavior is destroyed.

In conclusion, we have performed exact stochastic
mean-field calculations for 1D trapped fermions at finite
temperature. With attractive binary interactions, we have
observed the transition to a fermion-paired state charac-
terized by dominant Cooper pairing correlations, an al-
gebraic long-range order and a superfluid component.
Even if we are currently limited to a rather small number
of particles, these first realistic calculations with stochas-
tic mean-field wave functions illustrate the ability of our
method to obtain the equilibrium state of fermionic sys-
tems in the canonical ensemble. In addition, the imagi-
nary-time fluctuating mean-field propagation used here
can be coupled to a real-time one to get the exact dynam-
ics of an initial finite temperature state. Finally, the same
160401-4
approach can be used with trial wave functions different
from Slater determinants: For example, investigations on
macroscopic fermionic systems dominated by pairing
correlations are under development with stochastic BCS
wave functions.
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