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Ising Transition in the Two-Dimensional Quantum J1 � J2 Heisenberg Model
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We study the thermodynamics of the spin-S two-dimensional quantum Heisenberg antiferromagnet
on the square lattice with nearest (J1) and next-nearest (J2) neighbor couplings in its collinear phase
(J2=J1 > 0:5), using the pure-quantum self-consistent harmonic approximation. Our results show the
persistence of a finite-temperature Ising phase transition for every value of the spin, provided that the
ratio J2=J1 is greater than a critical value corresponding to the onset of collinear long-range order at
zero temperature. We also calculate the spin and temperature dependence of the collinear susceptibility
and correlation length, and we discuss our results in light of the experiments on Li2VOSiO4 and related
compounds.
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degree of freedom induced by frustration. They also is, in principle, possible. However, this possibility has
The study of frustrated quantum spin systems is one
of the most challenging and exciting topics in theoretical
magnetism. A very extensively investigated, yet largely
debated model is the so-called J1 � J2 Heisenberg model
with competing antiferromagnetic couplings (J1; J2 > 0)
between nearest-neighbors (NN) and next-nearest-
neighbors (NNN)

ĤH � J1
X
NN

ŜSi � ŜSj � J2
X
NNN

ŜSi � ŜSj; (1)

where ŜSi are spin-S operators on a periodic lattice with
N � L� L sites; hereafter � � J2=J1 defines the frus-
tration ratio.

In the classical limit (S! 1), the minimum energy
configuration has conventional Néel order with magnetic
wave vector Q � ��;�	 for�< 0:5. Instead, for� > 0:5,
the antiferromagnetic order is established independently
on the two sublattices, with the two (staggered) magne-
tizations free to rotate with respect to each other. Among
this degenerate manifold, two families of collinear states,
with pitch vectors Q � ��; 0	 or �0; �	, are selected by
an order-by-disorder mechanism as soon as thermal or
quantum fluctuations are taken into account. As a result,
for � > 0:5 the classical ground state breaks not only
the spin rotational and translational invariance of the
Hamiltonian — as the conventional Néel phase — but
also its invariance under �=2 lattice rotations, the result-
ing degeneracy corresponding to the group O�3	 � Z2.
Remarkably, the additional discrete Z2 symmetry can,
in principle, be broken at finite temperatures without
violating the Mermin-Wagner theorem [1], which applies
in two dimensions only to continuous ones. On this basis,
in a seminal paper [2], Chandra, Coleman, and Larkin
(CCL) proposed that the two-dimensional J1 � J2 model
could sustain an Ising phase transition at finite tempera-
ture, with an order parameter directly related to the Z2
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provided quantitative estimates of the critical tempera-
tures in the large-� limit for both the classical and the
quantum case.

While the CCL transition in the classical model has
been recently established by an extensive Monte Carlo
(MC) study [3], the occurrence of a low-temperature
phase with a discrete broken symmetry in the quantum
case is still a subject of debate. Besides its own theoretical
interest, this issue has become particularly important in
connection with the discovery of three vanadate com-
pounds (Li2VOSiO4, Li2VOGeO4, and VOMoO4) whose
relevant magnetic interactions involve nearest and next-
nearest spin-1=2 V4� ions on weakly coupled stacked
planes [4,5]. In particular, NMR and �SR(muon spin
resonance) measurements on Li2VOSiO4 [4] indicate the
occurrence of a transition to a low-temperature phase
with collinear order at TN ’ 2:8 K. The selection of the
collinear-ground state suggests the CCL mechanism as a
possible underlying explanation. Unfortunately, a clear
experimental and theoretical picture is still elusive: in
the experiments with vanadate compounds, structural
distortions, interlayer coupling, and anisotropy effects
are likely to come into play [4], and on the other hand
the theoretical investigation cannot rely on the insight
provided by quantum Monte Carlo methods as their re-
liability in the presence of frustration is strongly limited
by the infamous sign problem [6].

The necessary condition for the CCL transition to take
place is the presence of collinear order at zero tempera-
ture. To this respect, the existent theoretical results [6]
point towards a collinear-ground state for frustration ra-
tios � > �c, with the critical value, �c, increasing as the
value of the spin decreases (for S � 1=2,�c ’ 0:6). Below
this value quantum fluctuations seem to be strong enough
to stabilize a low-temperature phase with short-range
magnetic correlations [7], but above it a CCL transition
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been recently challenged by various high-temperature
expansion studies [8–10] which were not able to detect
any evidence of a finite-temperature transition for S �
1=2. On this basis, Singh et al. [9] have recently proposed
a scenario where, due to quantum fluctuations, the broken
lattice symmetry of the collinear-ground state would be
restored at any nonzero temperature.

In this Letter, we present a complete study of the
thermodynamic properties of the quantum J1 � J2 model
in its collinear phase, obtained within an effective
Hamiltonian approach: the pure-quantum self-consistent
harmonic approximation (PQSCHA) [11]. This approach,
based on the path-integral formalism, allows one to sepa-
rate the classical from the pure-quantum contribution to
the thermodynamics of the system. Both the classical
physics and the purely quantum linear effects are ex-
actly described within the PQSCHA at any temperature,
while the purely quantum nonlinear contributions are
treated within a self-consistent harmonic approximation.
This feature makes the PQSCHA a valid tool to inves-
tigate the effects of quantum fluctuations on phase
transitions —like the CCL one —whose character is es-
sentially classical. In particular, this approach has been
successfully applied to a variety of spin systems display-
ing Kosterlitz-Thouless and/or Ising critical behaviors,
providing reliable estimates of the transition tempera-
tures even for S � 1=2 [12].

Within the PQSCHA framework, the thermodynamics
of a quantum system is rephrased in terms of a classical
effective Hamiltonian with renormalized parameters de-
pending on the spin value, temperature, and frustra-
tion. The derivation of the effective Hamiltonian for the
J1 � J2 model closely follows the steps shown in Ref. [11].
The only detail which is worth mentioning here is that, in
this case, the calculation of quantum renormalizations,
involving a harmonic expansion around one of the two
families of collinear states, gives rise in general to solu-
tions with an explicitly broken symmetry under �=2
lattice rotations. However, it is possible to show that, to
O�1=S	, the effective Hamiltonian can be recast in a form
preserving all the symmetries of the original model, and
that reads (except for uniform terms)

H eff � Jeff1
~SS2
X
NN

si � sj � Jeff2
~SS2

X
NNN

si � sj; (2)

where si are classical vectors of length 1, ~SS � S� 1
2 is the

effective spin length [11], and Jeff1 � ��2x � �2y	�22J1=2,
Jeff2 � �42J2 are the quantum-renormalized exchange
integrals, with spin-, temperature-, and frustration-
dependent renormalization parameters �x, �y, and �2.
These, e.g., referred to the ground state with Q � ��; 0	,
are given by �2� � 1�D�=2 (� � x; y; 2) where the co-
efficients

D � �
1

N ~SS

X
k

a�k
a�k

�1� ���	
k 	Lk (3)
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are self-consistently determined with

a�k
2~SS

�����
J1

p �

���������������������������������������������������������������������������������
��22�1� ��2	

k 	 �
�2xy
2

�
�2x
2
��x	
k �

�2y
2
��y	
k

s
;

Lk � cothfk �
1

fk
; fk �

�h!k

2~SSkBT
; (4)

where �2xy � �2x � �2y, �
�x;y	
k � coskx;y, �

�2	
k � coskx cosky,

T is the temperature, and the renormalized dispersion
relation is !k � a�k a

�
k . Interestingly, at T � 0 the

PQSCHA turns out to be equivalent to the modified
spin-wave theory [9,13] which is expected to be a faithful
representation of the low-energy properties in the col-
linear phase. In particular, the spin-wave dispersion rela-
tion !k has been recently shown to be in remarkable
quantitative agreement with series expansion results in
the entire range of momenta for � > �c, and it is there-
fore expected to provide an accurate description of the
low-energy excitations of the model [9].

The occurrence of the CCL transition in the quan-
tum case can be directly addressed within our approach
by calculating the critical temperatures as functions of
the spin and of the frustration ratio: a zero value of
the critical temperature, or the breakdown of the self-
consistent harmonic treatment of quantum fluctuations,
would signal a possible absence of the phase transition. In
particular, using a simple scaling argument the critical
temperatures in the quantum case Tc�S; �	 can be related
to those of the classical model T�cl	

c ��	 through the fol-
lowing self-consistent relation [12]:

Tc�S; �	 � jeff1 �Tc; S; �	T
�cl	
c �eff�Tc; S; �	�; (5)

where jeff1 � Jeff1
~SS2=J1 and �eff � Jeff2 =Jeff1 . The classical

transition temperature T�cl	
c ��	 is accurately known

through extensive MC simulations for � � 2; it vanishes
for �! 1=2 and grows more or less linearly for � > 1.
Beyond � ’ 2 the determination of the critical tempera-
tures becomes troublesome due to severe finite-size ef-
fects related to the width of the domain walls between
domains with Q � ��; 0	 and Q � �0; �	 [3]. However,
for large values of the frustration ratio the classical
CCL estimate of the critical temperature, Tc=J2�0:768=
1�0:135ln�J2=J1	�, is expected to be reliable [2,3]. This
vanishes logarithmically in the limit J2=J1 ! 1, corre-
sponding to two decoupled unfrustrated Heisenberg sys-
tems. In order to represent the whole interval of
� 2 1=2;1	 in Fig. 1 we have plotted both the MC and
the CCL estimates of the classical critical temperatures as
a function of �=�1� �	. The mismatch between the MC
and CCL predictions is a minor flaw that can be easily
accounted for and corrected by slightly modifying CCL’s
criterion for the determination of the transition tempera-
ture as explained in Ref. [3]. This gives rise to the curve
marked in Fig. 1 as CCL�. Using the latter estimate, and
the classical MC results of Ref. [3], the transition tem-
peratures in the quantum case can be determined by
157202-2
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FIG. 2. PQSCHA results for the specific heat (upper panel)
and the order parameter � (lower panel) as functions of
temperature for various spins, in the case � � 0:65.
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FIG. 1 (color online). Renormalized critical temperature of
the CCL transition for various values of the spin evaluated
using Eq. (5) (nonsolid lines). Classical data (�) are taken from
Ref. [3]. The solid lines on the right are the CCL and the CCL�

predictions for the classical case (see text). The arrow marks
the boundary of the nonmagnetic phase for S � 1=2 [14].
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numerically solving Eq. (5). As shown in Fig. 1, the
critical temperatures decrease as the spin decreases, due
to the enhancement of quantum fluctuations. Remarkably,
while for large � the transition temperature in units of J2
vanishes for �! 1 for any value of the spin, in the
opposite limit the critical temperatures vanish approach-
ing a critical value �c > 0:5 that increases as S decreases,
thus confirming the existence of a nonmagnetic phase in
the regime of high frustration. In particular, for S � 1=2,
�c ’ 0:6 in agreement with the previous estimates of the
zero-temperature quantum critical point [6]. For large �,
the PQSCHA results turn out to be consistent with the
CCL estimates for the quantum S � 1=2 system [2,3]. For
intermediate values of �, the transition temperatures
remain finite for any spin value. However for S � 1=2,
though sizable (Tc=J2 ’ 0:2), the critical temperatures
are more than an order of magnitude smaller than those
considered in Ref. [9] in the discussion of the high-
temperature expansion results leading to the proposal
of a T � 0 critical scenario. On the contrary, a finite-
temperature phase transition at the critical temperatures
we estimate is in fact consistent with the numerical
results of Ref. [9].

The study of the thermodynamics of the effective
classical model (2) provides a deeper analysis of the
CCL transition. To this end, we have performed classical
MC simulations on the effective Hamiltonian on L� L
lattices, with L up to 300. The PQSCHA expression for
the order parameter associated to the CCL transition [2]
is � � �22��

2
x � �2y	hj�s 1 � s3	 � �s2 � s4	jieff=8, where

�1; 2; 3; 4	 are the sites of on an elementary plaquette of
the lattice with counterclockwise numbering, and h� � �ieff
is the statistical average associated to the effective clas-
sical Hamiltonian (2). Another quantity bearing clear
signatures of the transition is the specific heat, calculated
here as the numeric derivative of the internal energy per
spin, c � @u=@T, where u � hH effi=N � J1 ~SS

2��4x � �4y	.
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These quantities are shown for � � 0:65 in Fig. 2. The
Ising transition is clearly marked by a (finite-size) peak
in the specific heat in correspondence to the temperature
where the Ising order parameter vanishes. By decreas-
ing the spin, the saturated values of � decrease as well,
due to the increased quantum fluctuations, and so does
the peak of the specific heat, making the transition in
the quantum case generally weaker than in the classical
one. When � is increased, the signatures of the transi-
tion are even more dramatically suppressed, due to the
mentioned effects related to the width of the domain
walls [3]. The Heisenberg features become more and
more important with respect to the frustration effects;
in fact, as shown in Fig. 3, already for � � 1, the Ising
peak of the specific heat tends to be masked by the broad
maximum reminiscent of the unfrustrated limit �! 1,
and very large values of L are required in order to resolve
the logarithmic divergence (inset). Similarly, the absence
of critical features in the recent numerical calculations
of the specific heat [10] can be traced back to the
157202-3
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limited range of the correlators generated by the high-
temperature expansion [15].

In order to investigate the effect of frustration on the
antiferromagnetic correlations, we have also calculated
the collinear susceptibility

 �Q	 �
S�S� 1	

3
�
�40 ~SS

2

3

X
r�0

eiQ�rhs0 � srieff ; (7)

with Q � ��; 0	 or �0; �	, and the corresponding cor-
relation length (through the second moment estimator
[16]). The results for the case S � 1=2 for different
values of � are shown in Fig. 4. We observe that both
quantities are strongly suppressed by frustration for
� & 1, but for larger � the results are extremely close
to those in the unfrustrated Heisenberg model, corre-
sponding to �! 1. Therefore neutron scattering experi-
ments on Li2VOSiO4 and related compounds with a large
� are not likely to show any strong frustration effects in
the magnetic correlations, as also indicated by prelimi-
nary experimental results [18].

Finally, we compare the estimated critical temperature
for S � 1=2 with the transition temperature, TN � 2:8 K,
observed in Li2VOSiO4. For this compound, various
ratios J2=J1 have been estimated, ranging from J2=J1 �
1:1 with J1 � 3:9 K [4] to J2=J1 � 4:76with J1 � 1:25 K
[10]. Using these estimates, we get Tc � 1:01 and 1.46 K,
respectively, which are well below the transition to three-
dimensional collinear order observed at TN ’ 2:8 K. The
CCL critical behavior is therefore not detectable in this
compound [4]. In general, due to the weak nature of the
transition for J2=J1 * 1, previously discussed, the obser-
157202-4
vation of the CCL transition would require realizations of
a J1 � J2 model with a smaller value of the ratio J2=J1.

In conclusion, using the pure-quantum self-consistent
harmonic approximation, we have provided a complete
and consistent picture of the collinear phase of the 2D
quantum J1 � J2 antiferromagnet. Our results indicate
that the finite-temperature transition predicted by
Chandra, Coleman, and Larkin [2] persists down to S �
1=2 provided that the ratio J2=J1 is greater than a criti-
cal value corresponding to the stabilization of collinear
long-range order in the ground state. We believe that our
findings will be a valid reference point for future ex-
perimental investigations on Li2VOSiO4 and related
compounds.
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