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Resonating Valence Bond Wave Function for the Two-Dimensional Fractional Spin Liquid
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The unconventional low-lying spin excitations, recently observed in neutron scattering experiments
on Cs2CuCl4, are explained with a spin liquid wave function. The dispersion relation as well as the wave
vector of the incommensurate spin correlations are well reproduced within a projected BCS wave
function with gapless and fractionalized spin-1=2 excitations around the nodes of the BCS gap function.
The proposed wave function is shown to be very accurate for one-dimensional spin-1=2 systems and
remains similarly accurate in the two-dimensional model corresponding to Cs2CuCl4, thus representing
a good ansatz for describing spin fractionalization in two dimensions.
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FIG. 1 (color online). (a) Lattice geometries studied. ~��1 and
~��2 are the primitive translational vectors. (b) Lowest energy
spin-1=2 excitations of the 1DAFMHM as a function of mo-
mentum k. Dashed line is the BCS spectrum Ek scaled by a
factor to match the exact bandwidth. (c) Loci of k points, where

k � 0 (dashed lines) and �k � 0 (solid lines) for J0=J � 0:33.
temperature phases [7]. However in this study we ignore
these much smaller terms as our main purpose is to

The boundary of the first Brillouin zone (BZ) for the triangular
lattice is also denoted by long dashed lines.
The fractionalization of spin excitations in one-
dimensional (1D) spin-1=2 antiferromagnetic (AFM)
Heisenberg systems was conjectured by Faddeev and
Takhtajan [1] more than 20 years ago, and by now the
concept of ‘‘spinons,’’ as spin-1=2 elementary excitations
for 1D quantum AFM systems, has been well established
both theoretically [2] and experimentally [3].

An important and intriguing issue raised by Anderson
[4] after the discovery of high-TC superconductors is
whether fractionalized gapless spinons can be defined in
even higher dimensions. Many theoretical studies have
been done so far analytically [5] and numerically [6],
mainly by considering weakly coupled chains. Most stud-
ies suggest that unconventional 1D features are very un-
likely to occur in higher dimensions since more
conventional states, e.g., magnetically ordered, are stabi-
lized with a weak interchain coupling.

The same question can be also addressed experimen-
tally. A series of recent inelastic neutron scattering ex-
periments on Cs2CuCl4 by Coldea et al. [7,8] showed that,
as in 1D systems [3], the spectrum on this material
consists of a broad incoherent continuum at each momen-
tum, interpreted as spin fractionalization, despite the fact
that the system is clearly two-dimensional (2D). It was
also found that the system is described by the following
2D spin-1=2 AFM Heisenberg model (2DAFMHM) on
the triangular lattice [see Fig. 1(a)]:

H � J
X
hi;ji

~SSi � ~SSj � J0
X
hhi;jii

~SSi � ~SSj (1)

with the intrachain coupling J � 0:374 meV and the in-
terchain coupling J0=J � 0:33 [7]. Here the symbol hi; ji
(hhi; jii) indicates nearest-neighbor sites along the chain
(between different chains). Additional terms such as the
Dzyaloshinskii-Moriya interaction and the coupling in
the third direction, both of the same order ’0:02 meV
[8], are certainly relevant to explain the various low-
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determine the minimal model and its ground state wave
function (w.f.), which may lead to spin fractionalization
in the 2D system.

In this Letter we propose a projected BCS w.f. for the
ground state of Eq. (1): j�i � P̂P jBCSi, where jBCSi is
the ground state of the following mean-field BCS
Hamiltonian:

HBCS �
X
k;s


kc
y
k;sck;s �

X
k


�kc
y
k;"c

y
�k;# � H:c:�: (2)

Here 
k � �k �, �k � �2 cos�k � ~��1�, where  is the
chemical potential, cyk;s is the creation operator of an
electron with momentum k and spin s � �1=2, and �k
the real gap function for singlet pairing with A1 symme-
try. The variational state j�i for the spin Hamil-
tonian H is obtained by applying to jBCSi the
 2004 The American Physical Society 157003-1
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FIG. 2. (a) Variance of energy �2�j�i� for N � L� L clus-
ters. UC stands for uncoupled chains. (b) Estimate of the
variational error in the energy per site. The FN variational
error for the anisotropic triangular lattice and the variance
extrapolated error for uncoupled chains are also plotted.
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Gutzwiller projector P̂P onto the subspace of singly occu-
pied sites. The quantities �k and  are determined fol-
lowing the variational principle, i.e., by minimizing the
energy E�j�i� � h�jHj�i=h�j�i. For this purpose, the
Fourier transform �i;j of �k is truncated up to the third
distance ji� jj along the chain so that ten independent
parameters for �k are optimized along with  [9,10].
In the following, coupled L-site chains for a total
number N � L2 of sites with periodic boundary condi-
tions are used unless otherwise stated. In order to ex-
plore the quality of j�i, the variance of the energy,
�2�j�i� � h�j
H � E�j�i��2j�i=h�j�i, is also calcu-
lated [11]. For comparison, the same spin liquid w.f. j�i
is applied to other models, the uncoupled Heisenberg
chains with J0 � 0 and the 2DAFMHM on the square
and the triangular lattices with J0=J � 0:33 and J0=J � 1,
respectively, [see Fig. 1(a)]. For each model the gap func-
tion �k and  are optimized independently.

The main point of this Letter is that the variational
approach represents an accurate theoretical tool for ex-
tending the notion of spinons in higher dimensions.
With this approach we are able to reproduce the qualita-
tive, as well as the quantitative features of the experi-
ments, confirming the possibility of spin fractionalization
in 2D with a transparent theoretical framework. Fol-
lowing Wen [12], we also show that the excitations of
HBCS are related to the physical excitations of the spin
Hamiltonian.

As a first step, let us verify that the highly nontrivial
low-energy spectrum of the 1D spin-1=2AFM Heisenberg
model (1DAFMHM) with nearest-neighbor coupling J is
well reproduced by the w.f. j�i. It has been well known
that j�i describes almost exactly the ground state w.f.
[13,14]. Here we show that even the low-lying excited
states can be constructed from j�i. For the 1D model, the
optimized  is zero, and therefore the BCS spectrum

Ek �
�������������������

2k ��2

k

q
of Eq. (2) has gapless excitations at k �

��=2, exactly as the spinon spectrum of the 1DAFMHM
does [2]. Since the elementary excitations of HBCS with
energy Ek are described by the Bogoliubov modes, �y

k;s,
the simplest variational state for the spinon at momentum
k is jki � P̂P�y

k;#jBCSi. To see whether this state jki
corresponds to a spinon state, we consider a ring with
an odd number of sites L � 31 and a z component of the
total spin Stotz � �1=2. For this case it is known that a
well-defined spinon exists only for half of the total
Brillouin zone (�=2 � jkj � �). As shown in Fig. 1(b),
for this branch, the w.f. jki represents fairly well the
excited state with a spinon at momentum k, as can be
verified by the good accuracy in energy. Notice that,
although the projection P̂P is crucial to gain a quantitative
agreement for the spectrum, the BCS spectrum Ek al-
ready gives a qualitatively correct feature of gapless ex-
citations with finite spinon velocity at the right
momentum k � �=2 [see Fig. 1(b)]. It is also possible
to obtain an accurate description for the remaining
157003-2
branch of the spectrum by using a similar variational
w.f. with three Bogoliubov modes.

Even in 2D, the elementary excitations of HBCS define
quite naturally, after Gutzwiller projection, the spin-1=2
fractionalized excitations of the 2DAFMHM [12]. In
order to consider the possibility of spin fractionalization
in 2D, it is therefore important to show that the w.f. j�i
can appropriately describe the ground state of Eq. (1). The
most important effect of frustration on the proposed w.f.
j�i is generally to change  to a nonzero value. This
should be contrasted to the case of the 2DAFMHM on the
square lattice with no frustration such as the one shown in
Fig. 1(a), where the optimized  is always zero. The
reason why  � 0 in the square lattice for any J0=J is
easily explained. For  � 0, HBCS does not possess par-
ticle-hole symmetry, and therefore j�i violates the
Marshall sign rule [15], which is exact in the square
lattice case. Instead, the Marshall sign rule can be vio-
lated for J0=J > 0 on the triangular lattice, and the gap-
less excitations of HBCS are no longer located at
commensurate points. For example, the optimized value
for N � 18� 18 is  � 0:110�4�. Thus one can make a
spin-1 gapless excitation at wave vector Qx �
2cos�1��=2� � 1:035�2��, which is close to the experi-
mentally observed incommensurate wave vector on
Cs2CuCl4 [7]. Indeed, as shown in Fig. 1(c), the nodal
lines of �k intersect the lines defined by 
k � 0, and thus
four gapless modes exist.

To check the quality of the proposed w.f. j�i, the
variance �2�j�i� is calculated in Fig. 2(a), where for
comparison the variances are also presented for un-
coupled chains with J0 � 0 (spin liquid) and for the
2DAFMHM on the square lattice with J0=J � 0:33 (non-
spin liquid). As seen in Fig. 2(a), the variance for the
triangular case is much smaller than the variance corre-
sponding to the square lattice and instead this value is
much closer to the one for the uncoupled chains. To
further explore the quality of the w.f., we also calculate
in Fig. 2(b) the error of the variational energy from the
157003-2
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FIG. 3 (color online). Spin correlation functions Ci�l� �
hSz�~rr�Sz�~rr� l ~��i�i as a function of distance l along the ~��i
directions (see Fig. 1) for the 2DAFMHM on the triangular
lattice with J0=J � 0:33 (a),(b) and J0=J � 1:0 (e), and on the
square lattice with J0=J � 0:33 (c),(d). Open and solid marks
are for the variational (VMC) and FN calculations, respec-
tively. Lines are guides to the eye.
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exact value e0: �E � E�j�i�=N � e0. Since the exact
energy for the triangular lattice case is not known, we
estimate e0 by extrapolating to zero variance the varia-
tional energies corresponding to j�i and to the one
Lanczos step w.f. j�1LSi � �1� �H�j�i with optimized
� [9]. Indeed this procedure works well for the uncoupled
chains as shown in Fig. 2(b). Though the w.f. j�i for the
triangular lattice is not as accurate as for the uncoupled
chains, it remains of high quality, much better than the
square lattice case. It should also be emphasized that the
corresponding values for the best available variational
w.f. with explicit AFM order of the widely studied iso-
tropic 2DAFMHM on the square lattice with J0 � J [16]
are �2 � 0:015 and �E� 0:004 in the same unit as in
Fig. 2. Also comparing these values to ours, the quality of
the w.f. j�i forH is exceptionally good for 2DAFMHM’s.

Though the variational approach can provide accurate
upper bounds for the energy, it may suffer the well-known
difficulty that the low-energy modes are usually insensi-
tive to the total energy, and sometimes completely differ-
ent w.f.’s give more or less the same energy [17]. In order
to reduce this difficulty, quantum Monte Carlo methods,
such as a recently developed fixed node (FN) technique,
may be used [9,18]. Within this more powerful FN ap-
proach, the variational w.f. j�i is used to approximate
only the signs of the ground state w.f. In the basis of elec-
tron configuration jxi, all the off-diagonal matrix ele-
ments of the Hamiltonian such that sx0x � ��x0� �
hx0jHjxi��x�< 0 are considered exact. Instead, all the
ones with sx0x > 0 are treated semiclassically and traced
to the diagonal term, defining an effective FN Hamil-
tonian HFN. Since the semiclassical approximation is
usually good at low energy, we believe that this approach
provides a sensible test to examine the stability of the
variational w.f. at low energy. Indeed, if, for a properly
chosen w.f., sx0x is always nonpositive for x � x0, then the
FN approximation is exact and may change completely
the low-energy properties of the variational w.f. Namely,
for the 2DAFMHM on the square lattice, it is possible to
obtain the exact AFM ordered state provided that the
variational w.f. satisfies the Marshall sign rule, a condi-
tion that does not necessarily imply AFM order. In the
frustrated case no w.f.’s which fulfill sx0x < 0 for x � x0

are known. Therefore, in order to verify the quality of the
FN approximation, we estimate by quantum Monte Carlo
method the fraction w between the positive and the
negative off-diagonal elements. It is found that, due to
the quality of our w.f., the ratio w remains very small
(�0:03), implying that HFN contains a large fraction
(’1� w) of matrix elements equal to the exact ones,
showing that, in the present case, HFN represents a reli-
able approximation of H. We finally remark that the
ground state j�0i of HFN can be used as a variational
state of H with lower energy [18], E�j�0i� � E�j�i�, as
clearly seen in Fig. 2(b).

In Fig. 3, the spin correlation functions (z compo-
nent) h jSz�i�Sz�j�j i=h j i are calculated for the
157003-3
2DAFMHM on both the triangular and square lattices
using the variational (j i � j�i) and the FN (j i � j�0i)
methods. For the square geometry, it is clear that the FN
approach considerably enhances the large distance corre-
lations, suggesting that the spin liquid state is unstable
toward AFM long-range order, in agreement with pre-
vious studies [6]. A completely different scenario is evi-
dent for the triangular geometry where these long
distance correlations do not appreciably change with re-
spect to the variational j�i, strongly indicating that the
spin liquid state j�i is stable, namely, close to the exact
ground state, at least for the clusters studied.

In order to show further the reliability of our calcula-
tions, the spin correlation functions for the isotropic
2DAFMHM on the triangular lattice with J0 � J are
also calculated in Fig. 3(e). Here a P̂P jBCSi with good
variational energy is obtained with 
k � 0 and a simple
gap function with �i;j � �1 restricted up to second
nearest distances and with properly chosen signs [19].
Notice that, even by using such a simple spin liquid w.f.
with a rather large value of w� 22%, the FN method
correctly reproduces the classical three sublattice anti-
ferromagnetic correlations [20].

Encouraged by the above results, we now consider the
low-lying excitations on the spin liquid state j�i for the
2DAFMHM on the triangular lattice with J0=J � 0:33. To
this end the FN method is applied. Since w is rather small
for this case, we expect that this approach should give a
reliable description of the exact excitation spectrum ofH.
By using the forward walking technique [21], one can
evaluate the imaginary time (�) evolution of the follow-
ing quantity:

S�k; �� �
h�jSz�k�e��HFNSz��k�j�0i

h�je��HFN j�0i
; (3)

where Sz�k� �
P

re
ik�rSz�r�=

����
N

p
. By simple inspection,
157003-3
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FIG. 4 (color online). (a) A typical semilog plot of the
imaginary time correlation function. (b) Calculated spin-1
excitation energies (solid squares) along k== ~��1 for the aniso-
tropic triangular lattice with N � 10� 20, J0=J � 0:33, and
J � 0:374 meV. (c) The same as in (b) but along k ? ~��1 for
different kx. Here G2 � 4�=
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3

p
. For comparison, experimental

data on Cs2CuCl4 [8] (open circles) are also shown in (b).
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the lowest spin-1 excitation energy ES�1
k of HFN can be

obtained by fitting the large � behavior of S�k; �� /
e�E

S�1
k �: An example of how the method works is given

in Fig. 4(a). For large �, lnS�k; �� is almost linear and thus
we can estimate the lowest excitation energy for each k.
The results are summarized in Figs. 4(b) and 4(c). While
the spectrum has a strong 1D characteristic, it shows a
visible and nontrivial dispersion in the k direction per-
pendicular to ~��1. Moreover, as seen in Fig. 4(a), the linear
fit is not perfect in the intermediate times �J ’ 1, imply-
ing that there are higher energy (�J) contributions to the
spectrum, suggesting that the full spectrum of the dy-
namical structure factor may be consistent with the in-
coherent continuum observed in the experiments. The
extremely good agreement between the calculated spec-
trum and the available experimental data [7], shown in
Fig. 4(b), indicates that the 2D model of Eq. (1) describes
correctly the experiments, thus supporting the appear-
ance of a spin liquid state. Since no sizable magnetic order
was found in this 2D model (Fig. 3), it is very likely that
the experimentally observed ordered phases at very low
temperatures should be due to only 3D effects [8]. We
cannot exclude the possibility that a small spin gap could
remain in the thermodynamic limit, as our numerical
resolution is limited in the available finite size clusters.

In conclusion, we have shown that, by studying several
models, a simple variational approach is capable of de-
scribing the ground state properties as well as the low-
lying excitations of a spin liquid not only for 1D systems
but also for a 2D frustrated spin-1=2 model. Within this
approach, it appears that, when the HBCS spectrum re-
mains gapless at commensurate k as in a nonfrustrated
square lattice, the spin fractionalized state undergoes a
magnetic instability. By contrast, in the frustrated trian-
gular case, theHBCS spectrum becomes gapless at incom-
157003-4
mensurate k as soon as J0=J > 0, and it appears much
more difficult to destabilize the fractionalized state by a
magnetic phase transition. It should be emphasized that
both the experimental and the present numerical work
consistently suggest that a spin liquid with gapless
spin-1=2 excitations appears possible in 2D, its stability
being intimately related to the incommensurate momenta
of the gapless modes.

Our results may have some impact even for high-TC
superconductors, where the carrier doping naturally leads
to incommensurate nodal Fermi points. The existence of a
nodal spin liquid has been also conjectured before for
interacting Bose systems [22,23], where a Bose metal is
the natural bosonic counterpart of a spin liquid with
gapless spin excitations and no magnetic order.
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