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Experimental Synchronization of Spatiotemporal Disorder
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We report experimental evidence of a time-lag synchronization of spatiotemporal complexity. The
experiments were performed on two unidirectionally coupled, nonlinear-optical systems of single-
feedback type. Synchronization was investigated for different degrees of complexity of the spontaneous
structures, which were analyzed with cross-correlation functions and mutual information. Numerical
simulations yield comparable results and throw a light on the impeding role of spatial inhomogeneities.
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FIG. 1. Schematic experimental setup. For clarity, the pump
beam is always drawn as the two beams of the subsystems A
effective refractive index. A light wave, which passes the
and B. Components for beam expansion, for detection, and for
the generation of the bias beam are left out for simplicity.
It is well known that two coupled chaotic oscillators
can synchronize [1]. A new topic is the expansion of this
concept to extended systems, regarding coupling-induced
correspondence of complex states in time and in space.
Such complex spatial structures, which spontaneously
form in extended nonlinear systems, play a role in
many fields, from biology over chemistry to areas of
physics [2], e.g., fluid dynamics or nonlinear optics [3].

To achieve synchronization, the two regarded systems
must communicate. In most pattern forming systems, the
experimental realization of this coupling is difficult. The
spatial distribution of physical quantities, such as a flow
field or the concentration of chemical compounds, must
be manipulated dynamically by injecting a coupling sig-
nal. Therefore, until now only numerical simulations of
prototype models are performed, mostly in one spatial
dimension only [4–6]. Both unidirectional and bidirec-
tional coupling and the synchronization of not completely
identical systems were investigated [5]. Since the com-
munication of the full spatial distribution of a system
state is considered to be problematic, often only few dis-
crete coupling channels were used [6]. We instead regard
the coupling of the full, space-continuous, and time-
continuous state of spatially two-dimensional systems.

Light waves are ideal to realize the coupling signal,
since they can carry almost arbitrary spatial and tem-
poral profiles. Hence, it is straightforward to use a
nonlinear-optical system, where the light field is already
a central physical quantity. Our experimental setup be-
longs to the class of the so-called single-feedback sys-
tems, which have attracted growing attention [7–12].

In our system, a liquid crystal light valve (LCLV) is
used as optical nonlinearity, providing a self-defocusing,
saturable Kerr-type nonlinearity. The LCLV consists of
two thin layers, separated by a mirror. The layers are
sandwiched between two transparent, unstructured elec-
trodes to which a supply voltage is applied [13]. One layer
is a photoconductor (PC), which changes its conductivity
according to the intensity profile Iw�x; y� of an incident
light wave. This results in a space dependent voltage drop
over the other layer, a liquid crystal (LC), affecting its
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LC layer (read side) and is internally reflected, conse-
quently acquires a transverse phase profile, which is de-
termined by the intensity profile at the PC (write side).

The LCLV is operated under optical feedback: A plane
pump wave is phase modulated and reflected by the LCLV
read side. The modulated wave is then fed back to the
write side by beam splitters (BS), mirrors (M), and lenses
(L), as shown in Fig. 1. During the propagation through
the feedback loop, the phase profile is converted into an
intensity modulation by diffraction, thus closing the feed-
back. For detection purposes, a fraction of the feedback
wave is coupled out with the beam splitter BS2. We use a
digital camera to record an intensity distribution
Iw�x; y; t� equivalent to the one at the LCLV’s write side.
More details about this system and the theoretical mod-
eling can be found in [10,11]. Because of their versatility,
LCLV systems are frequently used to investigate sponta-
neous optical structures. In contrast to other configura-
tions with a rotation or a lateral shift of the feedback
wave [9,12], in our spatially symmetric system the domi-
nant spatial coupling is provided by diffraction.

Above a threshold Ith of the pump intensity Ip, the
plane-wave state becomes modulationally unstable with
respect to a critical transverse wave number kc. At higher
respective thresholds, also higher order critical wave
numbers become unstable. Increasing the pump intensity
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P H Y S I C A L R E V I E W L E T T E R S week ending
16 APRIL 2004VOLUME 92, NUMBER 15
from below threshold, first a stationary hexagonal pattern
develops [7,10], and then the patterns become increasingly
disordered [14,15]. Our system contains a spatial low-pass
filter in the feedback (aperture A1, lenses L1, L2). By
setting the low-pass cutoff just above the first critical
wave number, the evolution of spatial disorder is attenu-
ated and the degree of complexity grows more smoothly
with the pump intensity [15,16].

Snapshots of experimentally observed structures are
shown in Figs. 2 and 3. Just above threshold and with
the low-pass filter closed, remainders of perfect order are
visible as (moving) hexagonal domains, the typical ex-
tension of which shrinks with pump intensity. At 3 times
threshold, mainly disordered arrangements of spotlike
structures remain (not shown). With an open low-pass
filter instead, pronounced disorder sets in already closely
above threshold. Hence, the closed low pass allows us a
finer adjustment of the degree of complexity. We found
spatial complexity to be closely connected to temporal
complexity, i.e., the more the pattern is spatially disor-
dered, the more pronounced its dynamics.

We have recently shown how this system can be syn-
chronized by injecting perfect hexagonal patterns [17].
The question addressed here is whether a synchronization
in space and time can also be realized for spatiotemporal
disorder. For this purpose, we regard two systems, one of
which runs autonomously (master A), while the other
(slave B) is exposed to the attenuated signal generated
by the master system. Since it is difficult to get two
identical LCLVs, we divided the active area of a single
LCLV into two independent subsystems by inserting a
mask A2 with two circular holes (diameters D � 4 mm).
Because of inhomogeneities of the LCLV, the two systems
A and B cannot be expected to be perfectly identical.

In the feedback, a fraction of the light waves was
extracted with the beam splitter BS3. While the extracted
FIG. 2. Top: Snapshots from the recorded pattern sequence
without coupling (� � 0) in inverse gray scale (dark corre-
sponds to high intensity). A and B denote master and slave
systems, respectively. The system runs at a 1.5 times pattern
forming a threshold with a closed low-pass filter; the images
are taken at time intervals of t � 2:6 s. Bottom: the product of
the intensity variations ~IIA � ~IIB visualizes the small local cor-
relation. In the gray scale, zero corresponds to a shade of light
gray, because anticorrelations ~IIA � ~IIB < 0 appear.
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signal from the slave system B was blocked, the wave
from the master A was injected into B with the beam
splitter BS4. A half-wave plate �=2 and a polarizer P
were used to attenuate the injected signal, i.e., to set the
coupling factor �. The perpendicular polarization behind
the polarizer prevented interference effects. The recorded
intensity distributions do not contain this coupling signal,
because it was injected behind beam splitter BS2.

Because of the injected signal from A, the intensity in
B changes to I0B � IB � �IA; i.e., system B experiences a
total feedback power larger than system A. As a conse-
quence of the saturation of the nonlinearity, this causes a
difference between A and B. In order to reduce this effect,
a uniform bias beam was superimposed onto A, such that
I0A � IA � Ibias with Ibias � �hIAix, where the brackets h�ix
denote spatial averaging. The seemingly simpler attenu-
ation of I0B was hindered by technical reasons.

With the spatial low-pass filter cutoff set just above the
fundamental critical wave number, the pump intensity Ip
was set to different values above the pattern forming
threshold Ith. An additional measurement series was car-
ried out with open low pass and the pump at Ip � 1:5Ith.
In each particular measurement, the coupling strength
was set to a fixed value and a temporal image sequence
of up to 100 s duration was recorded.

From each sequence, we computed a spatial cross-
correlation function between A and B

C��x;�t; t� �
h~IIA�x; t� � ~IIB�x	�x; t	�t�ix����������������������������������������

h~II2A�x; t�ixh~II
2
B�x; t�ix

q ; (1)

where x denotes the transverse coordinates and IA and IB
are the experimentally recorded intensity distributions of
master and slave systems, respectively. The tildes stand
for the deviation from the mean value ~II � I 	 hIix.
Boundary effects are excluded by considering only the
central parts of the active areas (85% of the diameter).

We find a synchronization, where the slave state follows
the master with a certain time lag — an effect known
from purely temporal systems [1]. The left panel of
Fig. 4 presents typical examples of correlation functions:
The peaks appear at a time lag �t � 	�l���. It is also
FIG. 3. As in Fig. 2, but here with open low-pass filter and the
snapshots taken at time intervals of t � 0:2 s.
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FIG. 4. Left panel: Typical examples for the time-averaged
correlation hCAB�0; 0;�t; t�it, derived for the pump intensity at
1.5 times and closed low-pass filter. Right panel: Dependence
of the time lag �l on coupling strength �. �, Ip � 1:5Ith;
�, Ip � 3Ith, both for closed low pass; 4, Ip � 1:5Ith with
open low pass.
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typical that the peak correlations are about 20% larger
than at �t � 0. The time lag �l is found to drop with
increasing coupling strength (Fig. 4, right panel). A spa-
tial counterpart of the time lag would be a lateral shift (or
rotation) between the two patterns. Such a lateral shift,
however, was not observed; the dominant correlation
peak always appears at �x � �0; 0�, independently of �t.

Consequently, we use the correlation coefficient
cAB�t� � C�0; 0; �l; t� as a measure for synchronization.
The left panel of Fig. 5 shows the time-averaged correla-
tion coefficients, plotted over the coupling factor �. The
error bars indicate the rms value of the temporal varia-
tion. We have checked that the correlation coefficients do
not show temporal drifts, which confirms that the coupled
systems were in their asymptotic states.

The increase of cAB with the coupling strength �
clearly substantiates that the two systems become syn-
chronized by the coupling. Because of experimental im-
perfections and remaining differences between the
systems A and B, the correlation coefficient never reaches
unity. The fact that the correlation drops again at larger
coupling strengths can be assigned to the increasing
difference between the systems: The bias intensity for
the master system A is an insufficient way to balance the
unidirectional coupling. Figure 5 also shows that, fur-
ther above threshold, where the structures are more dis-
ordered, synchronization is harder to achieve.

Snapshots of synchronized states are presented in
Fig. 6, for the pump intensity just above threshold and
closed low-pass filter. The bottom panels show the local
correlations ~IIA � ~IIB, visualizing that the two structures
correspond to each other in large parts. Without coupling
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FIG. 5. Left panel: Time-averaged correlation coefficient
hcABit; right panel, mutual information MAB. �, pump inten-
sity set to Ip � 1:5Ith; �, to Ip � 3Ith, both for closed low pass;
4, Ip � 1:5Ith with open low pass.
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instead, the two systems A and B are independent, as can
be taken from Fig. 2.

As an alternative measure, we have computed the
mutual information MAB � HA �HB 	HAB (Fig. 5,
right panel). The entropies H:: �

P
p::log2p:: depend on

the (joint) probability distributions p:: of the intensities
IA and IB. We have used a histogram based method with
fixed and equal bins and have renounced on a correction
of the bias caused by the sampling [18]. This is sufficient,
since we are mainly interested in the dependence on �.
The recorded intensities were reduced to a resolution of
5 bits as a compromise between fine sampling of the
probability distributions and sufficient counts per his-
togram bin. To enlarge the data basis, the probability
distributions were determined from the whole image
sequence, and not for each snapshot individually. The
error bars indicate the estimated error, as described in
[18]. In all cases, the mutual information increases with
�, again indicating a coupling-induced synchronization.

Without low-pass filtering, a larger number of critical
wave number bands contributes to the pattern formation
process, resulting in very complex and dynamic struc-
tures (cf. Fig. 3). In this case, the maximum achievable
correlation coefficient and mutual information are rather
low and already saturate for � 
 0:2 (cf. Fig. 5). The re-
duced synchronization is probably the consequence of the
increased sensitivity to perturbations. Without low-pass
filtering, the system supports a much broader bandwidth
and, consequently, spatial noise gains more influence.
However, the increase of the correlation and of the mutual
information at lower coupling strengths still gives evi-
dence for a partial, coupling-induced synchronization.

For comparison, numerical simulations of the full
model equations were carried out, focusing on the effect
of spatial inhomogeneities. It is difficult to quantify the
experimental imperfections exactly. In particular, their
spatial profiles and/or spatial frequency spectra play a
decisive role. We have already observed that the transition
to and the characteristics of spatial complexity depend
sensitively on the inhomogeneities [11,19]. Hence, the
presented simulations are based on several assumptions
FIG. 6. Synchronized states at � � 0:4; the other system
parameters and the gray scales correspond to Fig. 2. Master
and slave images are taken simultaneously, i.e., for �t � 0.
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FIG. 7. Correlation coefficient cAB (left panel), and mutual
information MAB (right panel) from numerical simulations
with no (�), small (�), and strong inhomogeneities (4). The
inset shows a typical profile of the nonlinear sensitivity.
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and give only a qualitative picture. We use the scheme
described in [11], including speckles in the pump light
and spatial variations of the nonlinear sensitivity — both
different for master and slave. A grid of 1282 points was
used at a pump intensity of 3 times threshold with real-
istic circular boundaries and no low-pass filter. To simu-
late speckles, we added white spatial noise to the pump
beam (fraction f of the total power in nonzero Fourier
modes). The nonlinear sensitivities were given smooth
random profiles with an rms variation of �.

Figure 7 shows the resulting correlation coefficients
and mutual information for no (f � � � 0), small
(f � � � 2%), and stronger inhomogeneities (f � � �
5%). Clearly, the amount of synchronization declines
with increasing strength of the inhomogeneities. In
Fig. 7, one can find again the decay of high synchroniza-
tion with �, as already observed in the experiment and
assigned to the growing difference between master
and slave.

In conclusion, we have found evidence for a time-
lag synchronization of spatiotemporal disorder in a
nonlinear-optical experiment, realized in a unidirection-
ally coupled master-slave configuration. The increase of
the cross correlation and the mutual information with
the coupling strength clearly indicate coupling-induced
synchronization. The time lag between master and slave
state was observed to decrease with coupling strength.
Corresponding numerical simulations reveal how spatial
inhomogeneities counteract synchronization, which can
explain the imperfect experimental synchronization.

The mechanisms of this synchorization (from
�!��o�: place) of spatiotemporal disorder appear to be
quite general; an observation in other nonlinear ex-
tended systems should be possible. Good candidates,
besides other nonlinear-optical systems, are photosensi-
tive chemical reaction-diffusion systems, which can both
be detected and manipulated with light waves. A neces-
sary translation between detection and controlling light
or an amplification of the detection light can be per-
formed by means of optically addressable spatial light
modulators [13].
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