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The spherically symmetric magnetic monopole in an SU(2) gauge theory coupled to a massless Higgs
field is shown to possess an infinite number of resonances or quasinormal modes. These modes are
eigenfunctions of the isospin 1 perturbation equations with complex eigenvalues, E, = w, — ivy,,
satisfying the outgoing radiation condition. For n — oo, their frequencies w, approach the mass of the
vector boson, My, while their lifetimes 1/, tend to infinity. The response of the monopole to an
arbitrary initial perturbation is largely determined by these resonant modes, whose collective effect
leads to the formation of a long living breatherlike excitation with an amplitude decaying at late times

as 175/0,
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Magnetic monopoles—magnetically charged, finite
energy solutions in field theories with spontaneously bro-
ken gauge symmetries [1]—play an important role in a
number of field theoretic considerations. They can account
for the quantization of the electric charge, catalyze the
decay of proton, possibly be among the relevant topologi-
cal defects in the universe, determine supersymmetric
vacua, etc.—see [2] for reviews.

In this Letter we point out yet another interesting
aspect of the monopole that seems to have gone unnoticed
so far—the existence of its quasinormal modes (QNM)
or resonant excitations. We show that the Bogomol'nyi-
Prasad-Sommerfield (BPS) monopole admits an infinite
number of QNM. They manifest themselves as resonance
peaks in the low energy scattering cross section of
isospin 1 scalar particles. The QNM can also be described
as complex energy solutions of the isospin 1 small fluc-
tuation equations that are regular at the origin and satisfy
the outgoing radiation condition at spatial infinity. For
previous studies of the real energy small fluctuations
around the monopole we refer to [3].

We demonstrate, in particular, that the QNM of the
monopole lead to a universal late time behavior of the
perturbed monopole by giving rise collectively to a qua-
siperiodic, long living excitation whose amplitude decays
as 1%/ at late times (¢ being the standard Minkowski
time). In a recent numerical study of Fodor and Racz a
breatherlike excitation of the monopole retaining a con-
siderable fraction of the energy of the external perturba-
tion has actually been observed [4]. It has been one of our
aims to explain their observations.

It is worth mentioning the striking analogy of the r~%/¢
asymptotic behavior of the monopole with the late time
evolution of massive fields in black hole spacetimes [5].
Black holes also possess the QNM (see, e.g., [6] for a
recent discussion).

We consider a Yang-Mills—Higgs (YMH) theory with
gauge group SU(2) defined by the Lagrangian
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1 1 A
= —— F4,F 4+ D, dDrde — Z (e — 1)2,

L= 27k 5! )
(D

Here F9, = 9,A%— 9,A% + £,,,ALAS is the non-
Abelian  field strength tensor, D,®*= 9,0 +
sabL.AZd)" denotes the covariant derivative, and in our
units the mass of the gauge bosons is equal to one, My, =
1, while the mass of the Higgs particle is v/2A. The
energy-momentum tensor of the theory defined by
Eq. (1) is T} = —F¢,F#P + DF®*D,d* — &} L.

We restrict our analysis to the “minimal” spherically
symmetric sector, where the ansatz for the YMH fields is
given by A§ = 0,

xk x4
A:l = Saikﬁ[l - W(t) r)]) P = ?H(t, V), (2)
where a, i,k =1,2,3 and r? = x*x*. With 0 = 25 — &
the YMH equations reduce to

(PO+ W2+ H> - 1)W =0,

[0+ 2W? + AX(H?> — *)]JH = 0. ®)

The static, finite energy solution of these equations is the
’t Hooft—Polyakov monopole [1]. For the special case
A =0 the solution is known analytically—the BPS
monopole,

’

W = —)

(r) sinhr

We consider small fluctuations around the static mono-

pole background: W — W(r) + w(t, r) and H — H(r) +

V2 h(t, r). Linearizing Eqs. (3) with respect to w and h,
we obtain

H(r) = rcothr — 1. 4)

(PO+3W2 + H2 — 1)w = —q2\2WHh, (5
[20 + 2W2 + AGH? — r)]h = —q2\2WHw.  (6)
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Here an auxiliary parameter, ¢, has been introduced,
presently ¢ = 1. In this Letter we concentrate on the
case A = 0, when W, H are given by Eq. (4).

Resonant scattering.—First we shall demonstrate that
Egs. (5) and (6) describe resonance phenomena indeed.
Separating the variables as w = Re(e *“'w,,(r)) and h =
Re(e i“'h,,(r)) with real o, Egs. (5) and (6) become a
standard two-channel Schrodinger system. As is clear
from what follows, the frequency spectrum is continuous,
w? = 0. Regular solutions of Egs. (5) and (6) have to
satisfy the conditions w,, ~ h,, ~ r? for r — 0, and they
can be normalized for r — oo such that

h,(r)—=sinfwr+ 6(w)], w,(r)—Clw)r'/?e™", (1)

where v = V1 — w?. The h field is massless, so it oscil-
lates as r — oo for any value of w. The w field is massive,
and for w?> < 1 it shows bound-state-type behavior, with
exponential decay as r — oo. The fact that the w field is
nonradiative for w?> <1 plays the crucial role in our
analysis, and below we concentrate on this frequency
range. Equations (5) and (6) describe in this case the
scattering of a massless /2 radiation on the monopole
surrounded by a confined massive w field. This is
effectively a one-channel scattering problem. The scatter-
ing cross section is therefore given by o(w) =
47/ w?)sin’(8(w)). As the interaction of the h field
with the monopole is, in fact, short range, o(w) is finite.
We integrate Egs. (5) and (6) numerically to obtain w,,(r)
and h,(r) subject to the boundary conditions (7). The
resulting cross section o(w) shown in Fig. 1 exhibits a
sequence of resonant peaks accumulating near the value
o = 1. This can be so interpreted that for certain energies
of the incident 4 radiation the monopole core gets strongly
excited.

ONM—numerical results.—The scattering resonances
can usually be related to the quasinormal modes—com-
plex energy solutions satisfying the purely outgoing wave
condition at r = 0. To construct the QNM, we integrate
Egs. (5) and (6) with w = Re(e F'wg(r)) and h =
Re(e “E'hg(r)), where wg and hp are complex, the en-
ergy E = w — iy, and

Arr —hg(r)— e, Brr—wg(r)—Cr'/?e™ ", (8)

for 0 « r — oo. Here A, B, C are complex constants. With
the “shooting to a fitting point” numerical method we
find a discrete family of global solutions wg(r), hg(r)
subject to the boundary conditions (8) labeled by n =
1,2, ..., the number of nodes of Im(wg(r)) (see Fig. 2).
Notice that iy ~ e'®""7" grows at infinity—the QNM are
not physical solutions themselves, but only approximate
such solutions for a fixed r and for t — oo. The first 10
eigenvalues E,, = w, — iy, are listed in Table L

Table I clearly indicates that w,, — 1 and 7y, — O for
growing n. It seems that the QNM can be obtained for any
n, thus composing an infinite family. The values of w,

151802-2

1.5

0.5

0 L
0.7

w

FIG. 1. The scattering cross section o(w).

coincide well with the positions of the resonance peaks
shown in Fig. 1.

QNM—qualitative analysis.—The existence of the
QNM of the BPS monopole can be qualitatively under-
stood as follows. Let us consider ¢ introduced in Eqgs. (5)
and (6) as a free parameter, ¢ € [0, 1], and denote the
corresponding solutions by w(, and &,. For ¢ = 0 the
equations decouple. Setting h)(t, ) = e " (Cohy +
C_h_) with constant C., Eq. (6) is then solved by

h+(r) = (cothr ¥ iw)e™ " 9)

Equation (5) with w)(#, r) = e *'w(r) reduces to the
eigenvalue problem

2 2 2 _
<— % + WEAHH -1 +r51 ! )w(r) = w?w(r). (10)

As the potential in this equation has an attractive
Coulombian tail, since it behaves as 1 —2/r + O(e™")
for r — oo, there are infinitely many bound states, w(r) =
w,(r) for > = w2, n =1,2,.... Several low lying w,’s
are 0.798, 0.926, 0.961, 0.984, 0.995 for n = 1, 2, 3,5, 10,
respectively. The nth eigenfunction w,(r) has n — 1 nodes

in the interval r € [0, ) and can be normalized by the

0 ' 20 ' 40 ' ' ' 60
FIG. 2. The complex solutions of Egs. (5) and (6) for n = 3.
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TABLE I. The eigenvalues of the first ten QNM.
n w, ~ Y, n w, — Y,
1 08473 —i0.5077 X 107" 6 0.9888 —i0.8396 X 1073
2 09332-i0.1384 X 1071 7 0.9915 —i0.5499 X 1073
3 09637 —i0.5218 X 1072 8 0.9933 —i0.3794 X 1073
4 09774 —i0.2488 X 1072 9 0.9946 — i0.2731 X 1073
5 0.9846 —i0.1375 X 1072 10 0.9956 — i0.2030 X 1073

condition [§ wadr = 1. For large n the w,(r)’s extend to
the asymptotic region where the potential is Coulombian.
As a result, they can be well approximated by solutions of
the hydrogen atom problem. This implies that for n — oo
one has w2 =1—1/n?>+ O(n?) and also that w, ~
n=32. More precisely, for @ = 1 Eq. (10) admits a limit-
ing solution with infinitely many nodes, wq(r), which
itself is not normalizable, but which determines the point-
wise limit of w,(r); i.e., for a fixed F

limw,(r) = n 3wy (r) VY r<r (11)

n—0o0

Let us consider a solution of Egs. (5) and (6) given by
hoy =0 and wgp) = Re(A,e”"“'w,(r)), where A, is a
constant. “Switching on” a small value of the coupling
between the channels, g < 1, the w-bound state will start
losing its energy to the i channel, where this energy will
be radiated to infinity. To find approximatively the corre-
sponding solutions £, and w(, by successive iterations,
we solve first Eq. (6) for i, by replacing w by wg in its
right-hand side. The solution is regular at the origin and
reduces to an outgoing wave at infinity: /) ~
gA, e =) a5 r — oo,

Since there is now an outgoing flux of the & radiation,
the energy of the w-bound state will be slowly decreasing.
In the adiabatic approximation this process is described
by a decrease of the amplitude of the w field by replacing
A, — A,(1). To determine A, (f) we use the law of energy
conservation, 9 #T(’)L = (, whose integral form is

i([ r2T8 dr>= —limr2T6. (12)
dt 0 r—00

Expanding T4 up to terms quadratic in w and h, the
expression on the left in Eq. (12) is proportional to %Aﬁ
and determines the decrease of the bound state energy.
The expression on the right is proportional to A2 and gives
the energy flux at infinity. Thus A, = —7,A,,, from which
A, () = c,e” " with a constant c,. The coefficient 7y, is
given by

4 coh, —h_ 2
) +
= WHw,dr|. (13
Y4 wi(l + w?) (,/;) 2ir? Wn r) (13)

Summarizing, upon switching on a small value of g, the
stationary bound state of the w field, w,(r), becomes
quasistationary and is approximately given by

W(q)=Re(€7iE”tCan), h(q)=qRe(ef"E"’C,,hn), (14)
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where E, = w, — iy,, and h,(r) can be expressed by
quadratures in terms of w,(r). Evaluating the integral
in Eq. (13) shows that y, decreases as n grows; for
example, v,/q* = 0.057,0.010, 0.0035, 0.0009, 0.0001
forn = 1,2, 3,5, 10, respectively. This can be understood
qualitatively: since for large n the coupling WHw, ~
n~3/2 between the w and & channels is small, the decay
of the w-bound state to the 4 channel is unlikely. Using
(11) in Eq. (13) yields y,, ~ n~3 for n — .

The approximative formulas derived above under the
assumption ¢ < 1 give, in fact, when straightforwardly
extrapolated to ¢ = 1, a good approximation for w, —
iy,. This approximation actually gets better with grow-
ing n. We can therefore use the asymptotic relations
derived above to obtain for n > 1

l—w2=n?2+0(n3), Yo = bn73. (15)
Using the results of Table I, b = 0.2.

Collective effect of the QNM.—The numerical simula-
tions in Ref. [4] of the temporal dynamics of the strongly
perturbed BPS monopole have shown that a considerable
fraction of the energy received by the monopole is not
radiated away immediately. It gets ‘“‘trapped” by the
monopole and forms a long living excitation that radiates
very slowly, and whose late time behavior is to a large
extent independent of the structure of the initial pertur-
bation pulse. We can now offer an explanation to these
observations.

It is intuitively clear that, according to the eigenfunc-
tions of the linearized problem, there is a ‘“‘radiative”
sector containing the massless & modes with w? >0,
massive w modes with w? > 1, and also a “nonradiative”
sector consisting of the w modes with w? < 1. One ex-
pects that a part of the energy received by the monopole
will be distributed among the radiative modes and will be
radiated away. However, as a generic perturbation will
have an overlap also with the nonradiative modes, the
remaining energy will get trapped, forming a long living
excitation that will decay only due to a slow energy
leakage to the radiative channels. In the terminology of
black hole physics, the perturbed monopole will keep
some of its “hair” for a long time.

Although initially the dynamics will be nonlinear, one
expects linear effects to dominate at late times, when a
sufficient amount of the received energy is radiated away.
Let # = 0 be the starting point of the linear regime, when
the perturbed monopole is described by w(0, r) = SW(r)
and /(0, r) = 8H(r). The subsequent temporal evolution
is determined to a large extent by the QNM, since they
hold their energies for a long time. Using (14), we there-
fore approximate the general solution for t > 0 by

w(t, r) = Re<§: cne_i“’"’_yﬂtwn(r)>, (16)

n=1

and similarly for A(z, r). Here ¢, = [§ w,(r) 8W(r)dr.
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FIG. 3. The profile of w(z, 1) in Eq. (16) corresponding to the
initial steplike perturbation, SW(r) = 6(1 — r).

For a localized 6W the overlap coefficients ¢, are
maximal for small n. Therefore, terms with small n
dominate at first the sum. They soon are damped, how-
ever, since their damping rates, v,,, are the largest, and so
terms with higher n become more important. This “dying
out”” of modes has indeed been observed in Fig. 6 of [4],
and the frequencies w, measured there agree well with
the values in our Table L

For any ¢ there is a number, k(z), determined by the
condition .t ~ 1, such that all terms with n < k in (16)
are already damped, while those with n > k are not yet
important, since their ¢,’s are small compared to c;. The
sum therefore is dominated by terms with n ~ k().
Considering for simplicity only two of them, with fre-
quencies wy, w;41, their sum gives beats with the base
frequency (1) =3(wis; + ;) whose amplitude is
modulated with the frequency Q(r) = %(wkﬂ — wy).
This explains qualitatively the behavior shown in Fig. 3.
Since vy, ~ k=3 for large k, it follows that k(z) ~ '/ for
large ¢. Using (15), we conclude that for large ¢ one has
1 — w*(1) ~ t~2/3, which explains the feature observed in
Fig. 5 of [4]. Similarly, Q(r) ~ ¢~

Let us determine the late time behavior of the sum (16).
Since for large ¢ only terms with n = k() ~ r'/3 contrib-
ute to the sum, one can replace w,,, ¥,, ¢,,, W,(r) in (16) by
their asymptotic expressions for large n. One has from
(15) w, =1 —4n % and y, = bn~>. According to (11),
w,(r) = n=32w,(r) for r =7, where for 7 one can
choose the characteristic size of the wave function with
n=k(), F = [§ rwi,dr ~ k(1)* ~ /3. For a localized
oW the overlap coefficients are then given by
cn = [Cw, Wdr =~ Nn™? with N = [¥ we,6Wdr.
Using all this, the sum in (16) reduces for t — oo and for
r <23 to w(t, r) = Nwe(r)Re(G(7)), with

| it bt
G(t) = e_lt Z ;exp(W—F> (17)

n>t1/3
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This shows that the late time dynamics is indeed univer-
sal, since changing the initial conditions affects only the
normalization N'. The final task is to determine the
asymptotic behavior of G(). Transforming the sum (17)
to a contour integral and using the saddle point method,
we find that |G(¢)| ~ £~/ for t — oo. This £~/ exponent
explains the feature observed in Fig. 5 of Ref. [4].

The perturbed monopole thus ends up in a long living
breathing state dominated by the confined, slowly radiat-
ing massive modes of the gauge field. In the region r =
2/3 this state is characterized by modulated pulsations
whose base frequency approaches the vector boson mass,
while the amplitude decreases as 1~/

The total energy of the breather can be obtained
by summing over the QNM, E =3, c2wie 27 ~
S n3exp(—2bn~3t) ~ t7*3. This includes the energy
of the confined massive w modes and also that of the
massless 4 radiation emitted by these modes. E decreases,
since there is a flux of the 4 radiation at infinity, S =
E ~ 1t75/3. This exponent agrees with the result of [4],
where Fig. 2 shows the flux S~ 7753 at future null
infinity, with T ~ ¢t — r. By continuity, the flux through
a 2-sphere of a very large but finite radius 7 is still S ~
T-5/3. But since ¢ is finite then, for 7 > r one has T ~ 1,
which agrees with our result § ~ r~/3.

Although we have considered above only the BPS
monopole, similar resonances also exist for a nonzero
Higgs self-coupling A. This follows from the fact that the
potential in Eq. (10) isthen 1 — 1/r*> + o(r™2) for r — oo,
implying the existence of infinitely many bound states.
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