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Rules for Transition Rates in Nonequilibrium Steady States
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Just as transition rates in a canonical ensemble must respect the principle of detailed balance,
constraints exist on transition rates in driven steady states. I derive those constraints, by maximum
information-entropy inference, and apply them to the steady states of driven diffusion and a sheared
lattice fluid. The resulting ensemble can potentially explain nonequilibrium phase behavior and, for
steady shear, gives rise to stress-mediated long-range interactions.
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conditions. If so, then the method will have important
implications for nonequilibrium phase transitions such as

of performing the transition a ! b within time 	t, and
acquiring a mean flux J in time �, given the mean energy
If we wish to design a driven stochastic model that
exhibits a nonequilibrium steady state with a given flux,
how should we choose its transition rates? I answer the
question by applying Jaynes’ principle of maximum en-
tropy inference (MaxEnt). It might seem perverse to
specify a macroscopic result, and then infer an equation
of motion, since theoretical modeling usually involves
the reverse procedure. However, for equilibrium systems,
the principle of detailed balance (DB) is derived in just
this way. The mean energy is fixed, and the equilibrium
ensemble defined as the distribution of states respecting
that constraint, unbiased by any other information. One
then infers the properties of the appropriate reversible
dynamics, obtaining a set of rules, DB, which demands
that the ratio of rates for a transition and its time reverse is
given by the Boltzmann factor of the energy cost [1]. It is
commonly assumed that the same conditions of DB
should be used in nonequilibrium models subjected to a
finite throughput of flux, so that the dynamics of local
transitions is governed by the same physics as at equilib-
rium. However, I shall show that those are not the tran-
sition rates predicted by MaxEnt when a mean flux, as
well as a mean energy, is specified. The hypothesis that
the phase-space paths adopted by nonequilibrium systems
are distributed according to MaxEnt has been supported
by some notable successes, including the recovery of
linear transport theory [2] and, more recently, the fluc-
tuation theorem [3] and self-organized criticality [4]. It is
also a cornerstone of the GENERIC (general equation for
the nonequilibrium reversible-irreversible coupling) [5]
approach to nonequilibrium kinetics.

We define a particular nonequilibrium ensemble to be
the set of phase-space paths available to a system, mini-
mally constrained by fixing only the mean energy and
flux on those paths. The unbiased distribution of paths
appropriate to those constraints is given by MaxEnt.
Having defined this ensemble, we may investigate its
properties without controversy. A leap of faith is required
only to hypothesize that the ensemble is a good descrip-
tion of some physical systems under realistic forcing
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shear banding [6] and jamming [7]. I derive physically
convincing results for two applications: driven diffusion
and a model of interacting particles under shear.

Jaynes [2] showed that Shannon’s information entropy
[8] SI � �

P
�p��� lnp��� is maximized by the distribu-

tion p��� of states in the equilibrium canonical ensemble,
recovering the Boltzmann distribution. Jaynes also ap-
plied the method to nonequilibrium problems, for which
� represents an entire path through phase space, spanning
the duration � of the nonequilibrium experiment in ques-
tion. The maximization is constrained by whatever in-
formation is known about the paths. At equilibrium, a
constant mean energy E is specified. To define a driven
steady-state ensemble, we shall additionally stipulate a
(possibly multicomponent) mean flux J. We shall write
p��XjY� as the normalized probability for any quantity X
exhibited by the system during the time interval �, sub-
ject to conditions Y. Thus, MaxEnt yields the conditional
probability p���jJ; E� that, over the duration �, the sys-
tem takes a path �, given that the mean energy and flux
have the values specified. If ergodicity is assumed then,
for � ! 1, E and J can be interpreted as time averages.
So the system’s energy and flux are allowed to fluctuate,
but their averages over the duration � must have exactly
the specified values on all the paths considered.

Our aim is to find the rate, in the driven ensemble,

!driv
a!b � lim

	t!0
p	t�a ! bja; J; E�=	t; (1)

for a system to undergo some transition a ! b. This is the
probability (per unit time) that the transition will occur
within an interval 	t of the current time (t � 0), given
that the current state is a, and that the energy and flux will
eventually (over duration �) have the specified time aver-
ages. The constraints E and J, which define the nonequi-
librium ensemble, apply only to the duration � as a whole;
we do not constrain the energy and flux at each interval
	t separately. A conditional probability of the kind in
Eq. (1) can be manipulated by Bayes’ theorem, which
gives two equivalent expressions for the joint probability
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and initial state, thus:

p	t�a ! bja; J; E�p��Jja; E� � p	t�a ! bja; E�

	 p��Jja ! b; E�:

Normalization implies that p��Jj . . .� has dimensions of
reciprocal flux. Substituting into Eq. (1), and recognizing
that quantities for which only the mean energy is con-
strained belong to the equilibrium ensemble, yields

!driv
a!b � !eq

a!b�ab: (2)

Equation (2) confirms, as asserted above, that the rate of a
transition a ! b in the driven ensemble is not equal to the
rate at equilibrium, but is enhanced by a factor

�ab � lim
�!1

peq
� �Jja ! b�

peq
� �Jja�

: (3)

This factor is known in principle, as it is a property of the
corresponding system at equilibrium, not in the driven
ensemble. The denominator in Eq. (3) is the probability
that a system, starting in the current state a, will exhibit
an average flux J over the duration � if it is governed by
the equilibrium transition rates. Of course, it is exceed-
ingly unlikely for an equilibrium system to spontaneously
perform sustained flow, so the denominator is infinitesi-
mal. The numerator in Eq. (3) measures the infinitesimal
probability of that same flux at equilibrium, given that
the dynamics begins with a transition to state b. We shall
see that Eqs. (2) and (3) make intuitive sense in some
examples below.

The above derivation exploits the fact that the driven
ensemble is a subset of the equilibrium ensemble (albeit
in the extreme tail of the flux distribution), since it is
defined by one extra constraint. But the ‘‘subensemble
dynamics’’ (SED) [Eqs. (2) and (3)] should not be mis-
taken for a near-equilibrium approximation since the
subset of paths has properties very different from the
equilibrium set. Nevertheless, an equilibrium Markov
process remains Markovian under SED. For many tran-
sitions that contribute no flux and do not alter the future
likelihood of flux, �ab � 1 so Eq. (2) says the rate is equal
in the driven and equilibrium ensembles, as often as-
sumed. Two types of transition are boosted in the driven
ensemble: (A) a transition that carries a positive flux in
the direction of J, (B) a transition to a state that is more
amenable to subsequent flux-carrying transitions.

Many choices of prior rates !eq
a!b are possible, either

fully implementing Newton’s laws, or embodying ap-
proximate (e.g., Brownian) dynamics. Consider the exact
Newtonian evolution of the particles of a fluid element
surrounded by a reservoir of more fluid. Unphysical tran-
sitions, e.g., violating momentum conservation for inter-
nal degrees of freedom, have zero prior rate, so Eq. (2)
also forbids such transitions in the driven case, e.g., under
shear flow. Thus, the scheme respects Newton’s laws and
is consistent with the Liouville equation. The reservoir
introduces randomness into the dynamics by coupling to
150601-2
particles at the surface of the fluid element. SED provides
the unbiased description of the reservoir’s influence.

We now study two examples with Brownian prior dy-
namics. The first, a driven Brownian ideal gas, is simple
enough for exact calculation, but exhibits only ‘‘type A’’
transitions. More of the physical richness of SED will
appear in the second example, a complex system under
shear that demonstrates both types of enhancement.

Let us find the equation of motion for the particles of a
Brownian ideal gas with a drift velocity v. The problem
decouples for each component of each particle’s displace-
ment. The nontrivial part is the component in the flux
direction. We must assume prior knowledge of the motion
at equilibrium, for which each coordinate x�t� performs
an unbiased random walk according to the Langevin
equation, �dx=dt � ��t� with � a friction constant, and
� a delta-correlated noise function [9]. We introduce a
time step 	t (that will eventually be taken to zero), so that
the thermal noise � is drawn from a well-behaved
Gaussian distribution [9] and the Langevin equation re-
lates this stochastic variable � to a step x ! x
 	x such
that 	x � �	t=�. This equilibrium dynamics dictates
that each Brownian particle follows a path with steps
drawn from the distribution

peq
	t�	x� � G�	x;	t� �

1����������������
4�D	t

p exp

�
�	x2

4D	t

�
; (4)

which corresponds (per unit time) to a transition rate (per
unit distance) !eq

x!x
	x in the notation of Eq. (2). Here,
G�x; t� is the Green function for free diffusion, and the
diffusion coefficient is given by the Einstein relation D �
kBT=� . Now, from the set of all equilibrium paths, we
extract the subset exhibiting the required flux v, by
introducing a posteriori the constraint x��� � v� � x0
[10]. On those paths, the rate of a step 	x from position
x at time t is enhanced by

�x;x
	x �
G�x0 � x� 	x; �� t� 	t�

G�x0 � x; �� t�
(5)

[from Eq. (3)], since the probability of an equilibrium
particle achieving the required displacement in the re-
maining time is given by the Green function for free
diffusion. Substituting Eq. (5) into Eq. (2) in the limits
� � t and jx0j � jxj yields

pdriv
	t �	x� ! peq

	t�	x�
�
1
	x

v
2D

�	t
v2

4D

�

! peq
	t�	x� v	t�; (6)

where the second line follows by inspection of Eq. (4).
Drawing 	x from peq

	t in Eq. (4) yields the equilibrium
dynamics. So Eq. (6) specifies that substituting 	x� v	t
for 	x in the equilibrium equation of motion will yield
the dynamics of the driven Brownian ideal gas. Making
that substitution, with 	t ! 0, gives

dx
dt

� v
 ��t�=�; (7)
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where � is the usual Gaussian white noise. This is the
equation of motion for driven diffusion that one could
easily have written down. But it was not conjectured; it
was generated from the Langevin equation for free dif-
fusion, by the subensemble method. In fact, one could
write any number of stochastic equations that yield the
net drift v� over the fixed duration �, e.g., with some
temporal correlations or an additional oscillatory forcing
term that integrates to zero. But Eq. (2) specifies a unique
solution. Any equation of motion other than the simple
one specified by these dynamics would violate the
MaxEnt hypothesis, indicating that it introduces unwar-
ranted new information about the paths, additional to the
prior dynamics and posterior constraint.

Let us consider a second example, demonstrating that
rates respecting DB are not generally correct for driven
systems. In a simple 2D model of Brownian particles
under continuous shear, a triangular lattice has some
fraction of its sites occupied by monomers with nearest-
neighbor interactions. An average velocity difference be-
tween the top and bottom boundaries is established by
stochastically selecting a horizontal layer l between two
rows of the lattice, and shifting all of the system above
this layer to the right by one lattice spacing. If the layers
are selected with equal probability, these discrete shear
transitions will result in a uniform shear rate when ob-
served on large length and time scales. In addition to the
shear steps, local dynamics consists of choosing a pair s
of neighboring sites at random and swapping them, with a
rate !s. If one site is occupied by a monomer and the other
empty, the transition causes the monomer to hop, and
might result in an energy change by making or breaking
bonds. Repeating the same swap s recovers the original
configuration. In the absence of shear, transition rates
respecting DB, e.g., ‘‘heat-bath dynamics’’ [1], will cor-
rectly generate all static correlations. With shear applied
to our model, let us initially violate Eq. (2) and assume
that the same equilibrium dynamics is chosen for the
local swap transitions.

The model as defined would settle into a driven steady
state in the long-time limit and, by tuning the interac-
tions, could be made to exhibit nonequilibrium phase
transitions and amusing mesophase structures. But it is
unphysical, as becomes apparent with a particular choice
of interactions. Let the monomers be coupled in pairs by
bonds of infinite strength, to form dimers. A shear tran-
sition rotates some dimers (Fig. 1). Any dimer in a north-
FIG. 1. (a) Before and (b) after a shear step on layer l,
displacing everything above it to the right, thus rotating a
dimer clockwise, and making new contacts between monomers.
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east south-west orientation prevents shear on the layer
that it straddles; e.g., in Fig. 1(b) further shear on the
same layer is disallowed by a dimer that would be broken
by the transition. In the thermodynamic limit, the chance
of finding a lattice layer that is not blocked by at least one
such adversely oriented dimer vanishes. The model can-
not be driven to shear. It is unreasonable for a dimer to
wander through configurations under equilibriumlike dy-
namics, unaware that it is blocking a macroscopic flux.
Clearly, such dynamics will not work for rigid Brownian
dimers. Instead, DB should be violated, even at the local
level, so that adversely oriented dimers are pushed out of
the way of the applied flux. Even a dimer of finite strength
should prefer reorientation to shear-induced dissociation.
The rate of reorientation is prescribed by SED.

Consider first how SED treats shear steps. A shear step
is a type A transition as it contributes a quantum of shear
flux. In an equilibrium model with both forward and
reverse shear steps, the probability of accumulating a
large net shear by time t � � is tiny. If a forward shear
transition a ! b takes place before t � 	t, then one step
fewer is subsequently required to attain the desired shear,
so the numerator of Eq. (3) is larger than the denominator.
Thus, Eq. (2) correctly prescribes a higher rate for for-
ward shear steps in the driven ensemble than at equilib-
rium. Similarly, reverse steps are suppressed. As shear
steps on different layers l contribute equal flux, they have
approximately equal enhancement factors. But their
rates !driv

l are not necessarily equal (yielding affine
shear) since, by DB, !eq

l in Eq. (2) depends on the energy
cost. Hence, the driven shear steps are concentrated on the
softest layers, e.g., where fewest attractive neighbors will
be separated. Rather than imposing affine shear, the
driven ensemble, with its weak constraint fixing only
the total mean flux, allows authentic inhomogeneous flow.

As well as prescribing the rate of shear steps, Eq. (2)
also governs the local site-swapping dynamics. The
site-swapping transition s indicated in Fig. 2 is not of
type A, as it contributes no shear flux, but we shall see that
its rate is boosted by SED as it is a ‘‘type B’’ transition. In
Fig. 2, forward shear is blocked on every lattice layer by
adversely oriented dimers. So there is no chance of im-
mediate shear and, of course, little hope of the desired net
flux over the duration � of an equilibrium experiment.
Hence, the denominator of Eq. (3) is very small. The
s

FIG. 2. A configuration that cannot admit a forward shear
step. After swap s, the highlighted layer can shear.
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numerator asks for the likelihood of that same shear flux
if swap s (represented by a ! b) is first performed. This
would rotate an offending dimer, allowing forward shear
on the layer shown in bold. A shear step is not guaranteed
to follow swap s, but its likelihood is greatly increased by
the swap. Further shear could follow, until eventually
some dimers reblock the layer, returning to a configura-
tion statistically similar to Fig. 2. Hence, if s is per-
formed, the probability of achieving the desired net flux
at equilibrium, although small, is many times larger than
the denominator of Eq. (3). So SED greatly boosts the rate
for swap s in Fig. 2, and the highlighted dimer is quickly
‘‘pushed out of the way.’’ Similarly, if transition s were
blocked by another dimer it would also be moved by SED,
and so on, with correlated chains of events enabling the
stipulated mean flux to be realized.

It is startling that SED has generated long-range cou-
plings governing the local swaps, whereas their prior
equilibrium dynamics depends only on nearest-neighbor
interactions. Because the dimer highlighted in Fig. 2 is
alone in blocking its layer of the lattice, it is quickly
rotated under applied shear. It feels that there are no other
soft planes in the whole lattice that could yield. If there
were, the dimer would not feel such an imperative to
move, as the enhancement factor would be smaller. We
interpret that stress is concentrated at this point. The
physics of long-range stress-mediated interactions has
arisen naturally.

Unlike the example of the Brownian gas, the Green
function for the dimers is unknown, so an exact calcu-
lation is not presented. The problem is that evaluation of
Eq. (3) appears to require clairvoyance of the full con-
sequences of a proposed transition. However, those con-
sequences need only be forecast for a finite time into the
future, exceeding any correlation time, following which
the steady state can be assumed. The problem is generally
tractable in terms of a cluster expansion [11]. We can
speculate that the limit in which such an expansion
breaks down (because many correlated particle move-
ments are required for any finite flux probability) might
be identified with a jamming transition [7], just as break-
down of the virial expansion accompanies a critical point.

The method outlined here (detailed elsewhere [11])
puts the simulation of driven steady states on a closer
footing to equilibrium numerics, for which any
DB-respecting algorithm yields the Gibbs ensemble. By
contrast, sheared fluids have hitherto required micro-
scopically accurate simulations [12], with the associated
processing overhead and thermostatting issues [13]. This
scheme is not the only route to nonequilibrium transition
rates. Models may be defined that violate Eq. (2), but one
should then be aware that extraneous information has
been introduced, not present in the prior dynamics and
macroscopic observables. In this respect, the rules set out
here have the same status as the principle of DB.

The driven ensemble has been defined here by fixing
the time-averaged flux on each path, analogous to fixing
150601-4
energy in an equilibrium microcanonical ensemble. In
the limit � ! 1 (analogous to the thermodynamic limit),
identical results follow from an alternative ensemble, in
which paths are weighted exponentially by their flux,
analogous to the canonical ensemble. Details will appear
in a longer paper [11], but note that simply boosting a
transition exponentially by the immediate flux that it
carries would neglect the subtle non-mean-field time
correlations of SED.

I have studied the physical implications of MaxEnt for
driven steady states and shown how to implement the
resulting dynamics. The approach is unique in deriving
dynamical rules for a driven system under the stochastic
influence of a reservoir, without requiring any approxi-
mate coarse-graining or near-equilibrium assumption.
The rules have yielded a rich variety of correct physics
for driven diffusion and Brownian dimers under shear.
Many quiescent systems are well approximated by the
laws of canonical equilibrium, but exceptions include
glasses, granular media, and some cellular automata.
Similarly, not every nonequilibrium steady state will
respect the conditions presented here, but those that do
are expected to form a large and significant class.
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