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The Berry phase in a composite system with one driven subsystem has been studied in this Letter. We
choose two coupled spin- 1

2 systems as the composite system; one of the subsystems is driven by a time-
dependent magnetic field. We show how the Berry phases depend on the coupling between the two
subsystems, and the relation between the Berry phases of the composite system and those of its
subsystems.
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The Hamiltonian describing a system consisting of two
interacting spin- 1 particles in the presence of an external � cj��; �; g�jggi � dj��; �; g�jgei�; (4)
Geometric phases in quantum theory attracted great
interest since Berry [1] showed that the state of a quantum
system acquires a purely geometric feature in addition to
the usual dynamical phase when it is varied slowly and
eventually brought back to its initial form. The Berry
phase has been extensively studied [2–4] and generalized
in various directions [5–9], such as geometric phases for
mixed states [6], for open systems [8], and with a quan-
tized field driving [9]. In a recent paper [10], Sjöqvist
calculated the geometric phase for a pair of entangled
spins in a time-independent uniform magnetic field. This
is an interesting development in holonomic quantum
computation and it shows how the prior entanglements
modify the Berry phase. This study was generalized [11]
to the case of spin pairs in a rotating magnetic field,
which showed that the geometric phase of the whole
entangled bipartite system can be decomposed into a
sum of geometric phases of the two subsystems, provided
the evolution is cyclic.

Entanglement may be created via interactions or
jointed measurements, thus the way in which intersubsys-
tem couplings change the Berry phases of a composite
system and those of the subsystems is of interest. On the
other hand, the Berry phase has very interesting applica-
tions, such as the implementation of quantum computa-
tion [12–15]; all systems for this purpose are composite,
i.e., they consist of at least two subsystems with direct
couplings or are coupled via a third party. This again
gives rise to questions of how the couplings among the
subsystems changes the Berry phase of the composite
system and what the relation is between these Berry
phases of the composite system and those of the two
subsystems.

In this Letter, we investigate the behavior of the Berry
phase of two coupled spin- 12 systems, one of the spin- 1

2
systems is driven by a varying magnetic field. We calcu-
late and analyze the effect of spin-spin coupling on the
Berry phase acquired by the composite system and its
subsystems.
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magnetic field takes the form

H � 1
2� ~��1 � ~BB�t� � J���

1 �
�
2 � H:c:�; (1)

where ~��j � ��xj; �
y
j ; �

z
j�, �

i
j are the Pauli operators for

subsystem j �j � 1; 2� and ��
j � �1=2���xj � i�yj�. We

will choose ~BB�t� � B0n̂n�t� with the unit vector n̂n �
�sin� cos�; sin� sin�; cos�� and have assumed that only
subsystem 1 is driven by the external field. The classical
field ~BB�t� acts as an external control parameter, as its
direction and magnitude can be experimentally altered.
J stands for the constant of coupling between the two
spin- 12 systems. This coupling is not a typical spin-spin
coupling, but rather a toy model describing a double spin
flip; nevertheless, the presentation in this Letter may be
generalized to the system of nuclear magnetic resonance
(NMR) in which quantum computation is implemented
[12]. Furthermore, the observation of geometric phase for
such a system is feasible by current technology [16].

In a space spanned by fjegi; jeei; jggi; jgeig (jei 
 j "
and jgi 
 j #i) and in units of 1

2�B0, the Hamiltonian
Eq. (1) can be written as

H �

0
BB@

cos� 0 sin�e
i� 0
0 cos� g sin�e
i�

sin�ei� g 
 cos� 0
0 sin�ei� 0 
 cos�

1
CCA; (2)

with g � 2J
�B0

a rescaled coupling constant. Keeping �
constant and changing � slowly from 0 to ��T� � 2�
the Berry phase generated after the system undergoing an
adiabatic and cyclic evolution starting with an initial
state j�j�t � 0�i may be calculated as follows:

�j � i
Z T

0
dth�jj _��ji; (3)

where j�ji �j � 1; 2; 3; 4� are the instantaneous eigen-
states of the Hamiltonian Eq. (1) as

j�ji �
1�������
Mj

p �aj��; �; g�jegi � bj��; �; g�jeei
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FIG. 1 (color online). Berry phase corresponding to the in-
stantaneous eigenstate j�1i versus the rescaled coupling con-
stant g and the azimuthal angle ��Arc�. The plot is presented in
units of � for the Berry phase. The right-hand panel is a
contour plot for the left-hand panel.
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FIG. 3 (color online). Berry phase (in units of �) correspond-
ing to the instantaneous eigenstate j�3i versus the rescaled
coupling constant g and the azimuthal angle ��Arc�. The right-
hand panel is a contour plot for the left-hand panel.
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with

aj��; �; g� � sin�e
i�; cj��; �; g� � Ej 
 cos�;

dj��; �; g� �
g�cos�
 Ej�

sin�
 �cos�
 Ej���cos�� Ej�= sin��
ei�;

bj��; �; g� � 

cos�� Ej

sin�
e
i�dj��; �; g�;

Mj � jajj
2 � jbjj

2 � jcjj
2 � jdjj

2; (5)

and Ej the corresponding eigenvalues that have the form

E1 �

����������������������������������������������������
1�

g2

2
�
g
2

�������������������������
g2 � 4sin2�

qs
� 
E2;

E3 �

����������������������������������������������������
1�

g2

2


g
2

�������������������������
g2 � 4sin2�

qs
� 
E4:

(6)

In the simplest case where the coupling constant g � 0,
the eigenvalues E� � �1, the corresponding eigenstates
follow from Eq. (5) that a� � sin�e
i�; c� � 1
 cos�;
b� � d� � 0, and a
 � sin�e
i�, c
 � 
1
 cos�,
b
 � d
 � 0. These yield the well-known Berry phase
�� � ��1� cos�� and �
 � ��1
 cos��. This result is
easy to understand; the subsystem 2 that evolves freely
would make no effects on any behaviors of subsystem 1 as
long as the whole system is initially prepared in a sepa-
rable state, hence the Berry phase of the composite sys-
tem is exactly that of subsystem 1, when subsystem 2
acquires no geometric phase. For a noncyclic and non-
adiabatical process, Sjöqvist [10] and Tong [17] draw out
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FIG. 2 (color online). The same as Fig. 1, but for instanta-
neous eigenstate j�2i.
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the same results for geometric phases. For the composite
system with intersubsystem couplings, the Berry phase is
shown in Figs. 1–5 as a function of g and �, these
numerical results are an illustration of Eqs. (3)–(6).
Figures 1–4 are for the Berry phases with varying cou-
pling constant g and azimuthal angle �, whereas Fig. 5
shows the dependence of the Berry phase on the coupling
constant with a specific azimuthal angle � � �

4 . The
common feature of these figures is that with the rescaled
coupling constant g! 1, Berry phases �i ! 0 (all
phases are defined modulo 2� throughout this Letter).
This limit corresponds to the case when the first term in
Hamiltonian Eq. (1) can be ignored. Physically, the
spin-spin coupling may modify the azimuthal angle to
an effective one with which the system precesses around
the z axis. The spin-spin couplings describe a jointed spin
flip of the subsystems, the coupling constant then char-
acterizes the flip frequency. Consequently, the effective
azimuthal angle should be an average over all possible
azimuthal angles which would take positive and negative
values with equal probabilities in the limit g! 1.

From Fig. 1 we see that the Berry phase is a monotonic
function of the rescaled coupling constant, while it is
maximized for intermediate values of the azimuthal
angle �. The Berry phase for the eigenstate j�2i has a
similar feature as Fig. 2 shows. It is worth noting that
�1��� � �2��
 ��, this can be easily found by compar-
ing the contour plots in Figs. 1 and 2. This symmetry
originates from the Hamiltonian and it is clear that the
eigenstate j�1i�j�3i� is alternated with j�2i�j�4i� when
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FIG. 4 (color online). The same as Fig. 3, but for the instan-
taneous eigenstate j�4i.
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FIG. 5 (color online). The Berry phase versus the rescaled
coupling constant g with a specific azimuthal angle � � �

4 . The
indices on the line indicate the eigenstate by which we obtained
the Berry phase.
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FIG. 6 (color online). The Berry phase for the composite
system (diamonds) and for subsystem 1 (dash-dotted line)
and subsystem 2 (dotted line). A sum of the subsystem’s
Berry phase is also presented in the figure (solid line, over-
lapped by the diamond line). The azimuthal angle � � �

4 was
chosen for this plot.
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�$ ��
 ��, this leads to the symmetry in the Berry
phases. The contour plots presented in Figs. 3 and 4 show
the same symmetry indeed.

Figure 5 shows the results of Berry phases with a
specific azimuthal angle � � �0 �

�
4 . With g! 0 the

Berry phases approach two values (in units of �) of �� �
�1� cos�0� ’ 1� 0:707 as expected, whereas they ap-
proach 0 with g! 1.

Now we are in a position to study the Berry phase of
the subsystems and to show what the relation is between
these phases. Generally speaking, a state of subsystem is
no longer a pure one, so we have to adopt the definition of
geometric phase for a mixed state [6]; that is, �g �
argTr��0U�t�� with �0 denoting the initial density matrix
and U�t� the transport operator which should fulfill the
parallel transport evolution condition. This definition is
available when the system undergoes a unitary evolution.
For the subsystems with nonzero couplings, however, the
evolution of each subsystem is not unitary in general. So
here we borrow the idea in [7] to define the Berry phase.
A nonunitary evolution of a quantal state may be con-
veniently modeled by attaching an ancilla to the system,
in our case the ancilla can always be taken to be the other
spin- 1

2 system. The geometric phase corresponding to this
nonunitary evolution is then defined as the geometric
phase of the whole system (system � ancilla) that evolves
unitarily. For an adiabatic cyclic evolution, this leads to a
definition of Berry phase for a mixed state ��t� �P
jpjjEj�t�ihEj�t�j,

� �
X
j

pj�j; (7)

where �j � i
R
T
0 dthEj�t�j _EEj�t�i. The Berry phase Eq. (7)

for a mixed state is just an average of the individual Berry
phases, weighted by their eigenvalues pj. To be sure what
we have is consistent with known results, we check that
this expression reduces to the standard Berry phase � �
i
R
T
0 dth �t�j _  �t�i for a pure state ��t� � j �t�ih �t�j. In

our case we have four density matrices of mixed state for
150406-3
each subsystem that correspond to the four instantaneous
eigenstates of the Hamiltonian, respectively. For ex-
ample, �j1�t� � Tr2j�j�t�ih�j�t�j represents the jth den-
sity matrix for subsystem 1 among the four density
matrices, where Tr2 denotes a trace over subsystem 2.
The Berry phase corresponding to the state �j1�t� is then
given by Eq. (7). Actually, the definition Eq. (7) can be
derived by the idea of the so-called purifications as fol-
lows. We may construct a pure state

j��t�i �
X
j

�����
pj

p
jEj�t�i1 � jjia

for subsystem 1� ancilla (for subsystem 2� ancilla, in
the same manner) such that

Traj��t�ih��t�j �
X
j

pjjEj�t�ihEj�t�j � �1�t�;

where Tra denotes a trace over the ancilla and jEj�t�i
represent instantaneous eigenstates of �1�t�. Since the
states of the ancilla remain unchanged during the evolu-
tion, the Berry phase of subsystem 1 is then the Berry
phase of the compound (subsystem � ancilla), which
yields the definition Eq. (7). The Berry phase of the
composite system and those of the two subsystems are
illustrated in Fig. 6, a sum of the subsystem’s Berry phase
is also shown. There is evidence that the Berry phase of
the composite system can be decomposed into a sum of
the subsystem’s Berry phases; it reveals the relation be-
tween geometric phases of entangled bipartite systems
and those of their subsystems. We can prove this point
indeed by expanding the instantaneous eigenstate of the
composite system via Schmidt decomposition,

j�i �
X
i

�����
pi

p
jei�t�i1 � jEi�t�i2; (8)

where j�i denotes one of the instantaneous eigen-
states Eq. (4). This expansion yields the reduced den-
sity operator �1�t� �

P
ipijei�t�ihei�t�j and �2�t� �P

ipijEi�t�ihEi�t�j for subsystems 1 and 2, respectively.
150406-3
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By the definition Eq. (3), the Berry phase corresponding
to j�i follows

� � i
Z T

0

X
j

pjhej�t�j _eej�t�idt� i
Z T

0

X
j

pjhEj�t�j _EEj�t�idt;

(9)

i.e., the Berry phase of the composite system adds up to be
that of the composite system. This additivity holds mathe-
matically when the Schmidt decomposition is available
with time-independent coefficients pi. Physically, time-
independent coefficients pi indicate no population trans-
fer among the eigenstates of the reduced density matrix of
subsystem (this is what we called adiabaticity for the
subsystem in this Letter). Here the result that the Berry
phase of the subsystem adds up to be that for the com-
posite system remains unchanged for all two-subsystem
compounds when both the compound and the subsystems
undergo a cyclic adiabatic evolution.

The observation of this prediction with NMR experi-
ment is within the reach of current technology [16]. For
instance, we can use carbon-13 labeled chloroform in d6
acetone as the sample, in which the single 13C nucleus and
the 1H nucleus play the role of the two spin- 12 particles.
The constant of spin-spin coupling J�z1�

z
2 in this case is

J ’ �2��214:5 Hz, and we may control the rescaled cou-
pling constant g by changing the magnitude of the ex-
ternal magnetic field. We would like to address that the
interaction between the two spin- 1

2 particles in our model
is not a typical spin-spin coupling as that in NMR, but
rather a toy model describing a double spin flip. So, we
have to make a mapping when we employ the presentation
in NMR system and when all subsystem are driven by the
classical field. Finally, we want to discuss the problem of
adiabaticity. Our study is based on an adiabatic cyclic
evolution of the composite system. For any subsystem,
however, the conditions of adiabaticity are not fulfilled in
general; in this sense this is not a Berry phase but a
geometric phase for the subsystem when the composite
system itself is subject to an adiabatic evolution. But this
is not the case in this Letter. It is easily to check that the
eigenvalues of the reduced density matrix �j1�t� �
Tr2�j�j�t�ih�j�t�j (for any j) are independent of time,
which indicates the population on the eigenstate of �j1�t�
remains unchanged [18]while the composite system fol-
lows an adiabatic evolution.

In summary, we have theoretically investigated the
Berry phase of a composite system and that of their
subsystems. The Berry phase for a mixed state to our
best knowledge is a new concept. The relation between
150406-4
those phases is also presented and discussed. These results
provide us with a new way to control the Berry phase,
which thus might aid in finding some applications in
quantum computation. We are investigating possible ap-
plications of this effects and its connection to other
quantum effects in different systems.

X. X.Y. acknowledges enlightening discussions with
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