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Cluster Mode-Coupling Approach to Weak Gelation in Attractive Colloids
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Mode-coupling theory (MCT) predicts the arrest of colloids in terms of their volume fraction, and
the range and depth of the interparticle attraction. We discuss how the effective values of these
parameters evolve under cluster aggregation. We argue that weak gelation in colloids can be idealized
as a two-stage ergodicity breaking: first at short scales (approximated by the bare MCT) and then at
larger scales (governed by MCT applied to clusters). The competition between the arrest and phase
separation is considered in relation to recent experiments. We predict a long-lived ‘‘semiergodic’’ phase
of mobile clusters, showing logarithmic relaxation close to the gel line.
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universality classes [8]. Relative simplicity is restored at
low � thanks to the invariance of this aggregation pro-

These coarse-grained parameters describe the density
and interaction of aggregated clusters. We write
Hard-sphere colloids with short-range attractions can
undergo several types of arrest. At high densities they
show two distinct glass transitions (repulsion driven and
attraction driven), with a reentrant dependence on attrac-
tion strength [1]. This scenario was first predicted by
mode-coupling theory (MCT) [2– 4], and depends on
both the attraction range � (in units of particle diameter)
and well depth " (in units of kBT). MCT is remarkably
successful, at least for large volume fractions � * 0:4.

At lower volume fractions, however, there is no com-
parable theoretical framework. Yet ‘‘weak gelation,’’ in
which bonding is strong but not so strong as to be irre-
versible, can lead to nonergodic soft solids, of nonzero
static elastic modulus, at volume fractions of just a few
percent [5]. It might be argued that a finite modulus
requires a percolating network of bonds whose lifetime
exceeds that of the experiment. However, this is simplis-
tic: As shown by the case of repulsive glasses, a finite
modulus can arise with no bonding at all. We argue here
that the rigidity of weak gels arises not from bond perco-
lation but from kinetic ergodicity breaking [6], just as it
does in glass formation. This suggests that an MCT-like
approach to weak gelation could be fruitful.

MCT takes its structural input from equilibrium liquid
state theory; it cannot address states of arrest where this
structure is strongly perturbed [7]. This matters relatively
little at � * 0:4, where each particle interacts with many
others, and not much room is left for structural develop-
ment upon a quench. More severe consequences must
be expected at low volume fractions where strongly non-
uniform, ramified gels arise. Here the pathway to com-
plete nonergodicity (starting from a homogenized fluid
sample, for instance) must involve a nontrivial episode of
structure formation, akin to irreversible cluster aggrega-
tion (ICA). Such kinetics certainly dominates for irre-
versible (‘‘strong’’) gelation ("�1 � 0), where particles
aggregate on contact into clusters, with various kinetic
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cess under coarse graining in the (ordered) limit �, "�1 !
0 and � ! 0. This scaling limit is controlled by an ICA
‘‘fixed point,’’ where details of the short-ranged attrac-
tion are irrelevant. The resulting fractal clusters grow
indefinitely only if � � 0; for � > 0 they eventually
form a percolating gel of locally ICA-like structure [9].

In this Letter, we explore how ICA might connect to
weak gelation through a unified (albeit speculative) MCT-
based scenario of colloidal arrest. We consider the
changes in the system parameters (�; �; "�1) upon coarse
graining in the vicinity of the ICA fixed point. This leads
to a schematic description of the suspension in terms of
an effective theory for a dense liquid of ‘‘renormalized
particles’’ or coarse-grained clusters, for which recent
simulations [10] seem to provide some direct evidence.
Applying MCT to this theory, we obtain a new condition
for arrest of the clusters, and identify the arrested state
with the weak gel phase. If this condition is not met, one
has instead a fluid of clusters (or ‘‘cluster phase’’ [11]) that
is ergodic at large scales. We allow for bond breaking and
reconnection at the scale of entire clusters, but not recon-
struction at shorter scales. We return to this later, where
we also address the potentially complex interplay be-
tween weak gelation and phase separation.

Within our scenario, weak colloidal gelation emerges
as a double ergodicity breaking: once when the original
suspension becomes kinetically unstable against aggre-
gation, and a second time when the fluid of clusters
arrests. We suppose that the criterion for the initial in-
stability is given by bare MCT [6]. We assume 1 � " <
1: Bonds can break with a small but finite probability.
Initially, this has almost no effect on the aggregation,
which flows towards the ICA fixed point. As clusters
grow, the chances of fragmentation increase. The ICA
fixed point is unstable and the system eventually flows
away from it. The flow takes place in a parameter space
comprising effective system variables � ~��; ~��; ~""�1� (Fig. 1).
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FIG. 1 (color online). Schematic parameter flows (arrows)
near the ICA fixed point (at the origin, bottom left). Flow
(a) within the lower coordinate plane ("�1 � 0) gives perco-
lation of ICA clusters on passing through a nonequilibrium
percolation line (heavy dashed line). For f�N� � 0, trajectories
starting from finite "�1 flow upwards to smaller ~"" and towards
larger ~�� and smaller ~��. Those that arrive on the domed dark
surface result in semiergodic cluster phases. The marginal gel
trajectory (b) ends at the seam where the repulsive (light
surface) and attractive (dark surface) branches of the MCT
transition meet, close to a line of A3 singularities (dash-dotted
line) and/or an A4 singularity ( � ). Inset: ~��� ~""�1 projection of
trajectories leading to cluster or gel phase (thin line) and
marginal gel (b).

P H Y S I C A L R E V I E W L E T T E R S week ending
9 APRIL 2004VOLUME 92, NUMBER 14
~�� � �N3=dc�1; (1)

~�� � �N��; (2)

~"" � "� � lnN � f�N�; (3)

and call the combination of MCT with Eqs. (1)–(3)
‘‘cluster mode-coupling theory’’ (CMCT). N is the num-
ber of particles in a typical cluster, which is a parametric
label along flow trajectories, each of which is indexed by
values of ��; �; "�1� in the initial state after the quench.
In Eqs. (1) and (2), evolution of the effective volume
fraction of clusters (viewed as quasispherical, smooth
objects) involves a scaling index dc, and that of the
effective relative range � of their attraction another posi-
tive exponent �.

More subtle is the evolution of the bond energy " in
Eq. (3). Since the ICA fixed point leads only to singly
connected bonding, there is no power of N multiplying
the short-range attractive part of the bond energy. How-
ever, Eq. (3) accounts for bond breaking through a renor-
malization of the cluster-cluster attraction " by a
breaking entropy, which we write as the logarithm of a
breaking degeneracy N� � N. This acknowledges that
a ramified cluster falls apart when any of the N� bonds
along its backbone is broken (with probability 	e�").
Equation (3) also includes a term f�N� arising from addi-
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tional interactions. For purely short-range attractions this
term should vanish, but it allows us to address also the
case of a weak long-range repulsion, such as has recently
been shown to arise from poorly screened dissociated
surface charges even for supposedly neutral colloids in
organic solvents [12]. Depending on the strength and
range of the repulsion, the resulting f�N� may dominate
the logarithmic term in Eq. (3) without having much
effect on the equilibrium phase diagram [13].

Initially, all three exponents introduced in the CMCT
equations are properties of the ICA fixed point (typically
dc 
 2, � 
 � 
 1=dc, in three dimensions [8]). How-
ever, they will start evolving once the flow moves away
from it, as the internal structure of clusters evolves. An
explicit treatment of this drift is not attempted here: We
treat dc; �; � as negotiable constants.

The resulting CMCT flow within the renormalized
parameter space � ~��; ~��; ~""�1� is sketched in Fig. 1. The
flow is bounded by the MCT transition surface in this
space, which divides ergodic (upper left) from nonergodic
regions. This surface [2– 4] comprises a dome joined to a
sheet. Below the dome lie attractive glasses and, to the
right of the sheet, repulsive ones. Note the presence of a
seam ~��c, on the transition surface, along the line where
the sheet meets the dome. Consider a trajectory of in-
creasing N which rises up through the dome, left of the
seam ( ~��< ~��c). At this point, aggregation ceases, be-
cause the clusters’ effective parameter values now corre-
spond to an ergodic phase. A semiergodic fluid of finite
clusters can be expected whenever the initial parameter
values belong to such a trajectory. (This requires small �.)
If a series of such cluster fluids is now created by increas-
ing � at fixed " (or vice versa), then the last of these to
enter an ergodic phase will do so just beside the seam
( ~�� ! ~���

c ). Accordingly, the first fully nonergodic phase
formed has a trajectory that just meets this seam; beyond
lies a repulsive glass, so that aggregation ceases. Unlike
the cluster fluid, the resulting marginal gel has finite
modulus—as do the nonmarginal gels arising at larger
� or ". This not because of percolation, which for revers-
ible bonding is not relevant, but because the CMCT flow
has led to a ‘‘cluster glass’’ which we identify with the
weak gel phase. A typical phase diagram predicted by
this approach is shown in Fig. 2.

Note that, for moderate ~��, the seam is not too far from
the line of A3 singularities, which is associated with a
distinctive arrest scenario including a large exponent for
the divergence of the structural relaxation time, and
strongly stretched exponential or even logarithmic decay
of the density correlations [4,15,16]. Marginal gels could
thus be influenced by these singularities even at low
volume fractions, although the details of this depend on
the initial range � and on the exponent �.

CMCT clearly offers nontrivial predictions for cluster
phases, weak gels, and relaxation anomalies. It neglects
two important pieces of physics which may complicate
148302-2
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FIG. 3 (color online). Kinetic phase diagram, superimposed
on the equilibrium phase diagram, for an indicative model. The
equilibrium free energy density is that of a lattice gas, f��� �
� ln� ��m ��� ln��m ��� � ����m ��� with �m �
0:64 chosen as a maximum packing fraction. The second virial
is matched to the colloidal system so that ��"� � 1=2� B2�"�v
with v the volume of a colloid; B2 is that of a square well
potential of range � � 0:1. The CMCT line is found for the
colloid system as in Fig. 2; equilibrium binodal (Bi) and
spinodal (Sp) are marked. Inset: Modified tangent construction
on f��� [14] in which states beyond D are deemed inaccessible.
The gel line (with percolation threshold set at phase volume 0.3
of the arrested phase) bounds the darker shaded region.
Between this and the modified binodal (dashed line at left)
lies the cluster fluid phase (lighter shading).
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FIG. 2 (color online). Kinetic phase diagram predicted from
CMCT with initial range of square-well attraction � � 0:1.
Exponents are chosen for definiteness as dc � 2, � � � � 1=2
and f�N� � 0. Bare MCT (in the low-� approximation [6]) is
used to estimate the onset of a clustering instability (lower
solid line). The CMCT line divides cluster fluids from weak
gels (upper solid line). Results allowing also for phase separa-
tion, using the indicative model of Fig. 3 give shifted phase
boundaries (dashed lines). (The part of the equilibrium binodal
above the AB tie line in Fig. 3 is also shown, dotted.)
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the experimental situation considerably. First, we allowed
clusters to dissociate by bond breaking, but neglected any
internal restructuring within the clusters. By allowing
these to coarsen into globules, this could cause both the
cluster fluid and weak gel phases to have a finite lifetime.
Moreover, for f�N� � 0, the breaking and rebonding of
the O�N� dangling ends within a cluster may cause local
restructuring even before the flow reaches the MCT sur-
face. This issue is less important in the presence of a
weak, long-range repulsion f�N� > 0 (e.g., [12]), which,
similar to bond breaking, drives an upward flow in Fig. 1.
In favorable cases, this could dominate the bond-breaking
term at large ", and allow the CMCT scenario to establish
on a time scale during which local reconstruction re-
mains negligible.

The second, closely related, omission from the CMCT
predictions of Fig. 2 is the interplay of cluster formation
with liquid-gas-type phase separation [17]. To be confi-
dent of observing the CMCT line directly at small �, it
must lie outside the binodal. When that condition is
not satisfied, we expect results that depend on quench
rates. For a very slow quench, the system first demixes
locally and then coarsens, until the denser coexisting
phase, whose properties continue to evolve, arrests by a
CMCT-like mechanism (merging with bare MCT at high
enough density). Slow quenches have recently been exam-
ined experimentally, and these ideas may account for a
surprising ‘‘bead phase’’ seen at low � [18].

For faster quench rates, local arrest can precede coars-
ening so that, at small �, large fractal clusters will at first
evolve, regardless of the underlying phase behavior.
The resulting scenario is explored, within an indicative
148302-3
model, in Fig. 3. We follow Keller [14] in arguing that the
densest phase capable of formation by demixing arises
where the glass line intersects the binodal (point B). The
nonergodicity line should depart from the CMCT predic-
tion at this point, and track to lower densities along the tie
line BA. This describes a locally demixed state in which
only the denser (gel-like) B component is nonergodic. At
high �, the B phase percolates giving a finite modulus gel;
but at lower � one expects a cluster fluid, now made of
disconnected gel-like fragments. The ‘‘gel line,’’ separat-
ing states of finite modulus from those without, corre-
sponds to the geometric percolation threshold of the
arrested phase. Deeper quenches should behave similarly,
with local coexistence between a dilute fluid C and an
arrested state D whose density lies on the CMCT line.
This is governed by a modified common tangent [14] in
which inaccessible densities (beyond point D) are prohib-
ited (Fig. 3, inset) shifting the binodals inward. Along the
tie line CD, the gel line again corresponds to percolation
of the arrested phase. At still deeper quenches the CMCT
line lies within a (renormalized) spinodal curve; this
local instability complicates matters further, and is
ignored in the indicative model of Fig. 3. A transition
from percolating gel to a cluster phase of gel fragments
should remain. Finally, at infinite " the CMCT line, the
gel line, the equilibrium spinodal, and the binodal all
meet the ICA fixed point at the origin. Notably, this
scenario allows the ‘‘marginal gel’’ behavior to extend
148302-3
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inside the gel phase: Indeed a range of compositions,
including the AB tie line and a region below it, now
have local phase separation involving a marginal gel
(Fig. 3).

We now confront the implications of our work with
experimental data. The most direct consequence of our
hypothesis of a double ergodicity breaking, a fractal gel
structure, is a very common observation. It has inspired
successful phenomenological gel models, e.g., [19–21],
for which CMCT could provide a more rational (albeit
still speculative) basis. Experiments [22] demonstrate that
even for moderate attractions the assumed closeness to
the ICA limit is well justified at low volume fractions in
some cases, while in others the measured fractal dimen-
sion lies higher than for the appropriate ICA model [23].
The latter could well be a consequence of a partial phase
separation followed by arrest, as discussed above.

Second, CMCT predicts dynamic anomalies along and
near much of the gel line (including the part that lies
along the AB tie line of Fig. 3). In this context, the
observation in Ref. [11] of a large exponent (5:5� 1 at
� 
 0:1) for the divergence of the terminal time, and of
slow, possibly logarithmic, structural relaxation close to
the gel line at low � are both suggestive of CMCT.

A final comparison involves the nonequilibrium phase
diagram, where a striking feature at low concentrations
(e.g., [11,21,24]) is indeed the existence of a phase of
large mobile aggregates, lying between the ordinary fluid
phase and the gel. In fact, the phase diagrams in Fig. 5 of
Ref. [11] and Fig. 2 of Ref. [25] are very similar to our
Figs. 2 and 3, respectively. As mentioned above, an inter-
play of CMCT with phase separation is expected for most
colloidal parameters, including those of Ref. [11]. Figure 2
therefore shows also the phase boundaries adjusted to
allow for phase separation according to the indicative
model of Fig. 3. In this representation, the cluster/gel
boundary remains nearly straight, although shifted
downward somewhat. The results remain qualitatively
consistent with Ref. [11]; given the indicative character of
the model, this is encouraging. Since the system is among
those for which a long-range Coulomb repulsion might be
present [12], it is possible that f�N� > 0. Qualitatively,
this would move the calculated gel line upward, stabiliz-
ing the cluster phase.

In summary, we have proposed a new framework to
describe weak gelation based on the mode-coupling
theory applied to clusters (CMCT). This certainly
contains speculative elements but gives nontrivial predic-
tions, several of which compare well to existing experi-
mental data. Underlying our picture of a double ergodicity
breaking is the premise of a time scale separation. Our
cluster glass view of weak gels is a meaningful concept on
time scales longer than the time for cluster formation, but
short compared to typical times over which a cluster
reconstructs as it evolves towards equilibrium. This con-
dition is more easily satisfied in systems where a repul-
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sion between clusters builds up as they grow (e.g., weakly
charged particles), limiting their final size. When the size
is limited by bond breaking, the required time scale
separation is less likely. Even if the resulting weak gels
are not true examples of broken ergodicity and are only
temporary structures, CMCT may offer valuable insights
into their behavior. Further experimentally relevant
consequences of the scheme will be the subject of
future work.
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