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Short-Term Memory in Orthogonal Neural Networks
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We study the ability of linear recurrent networks obeying discrete time dynamics to store long
temporal sequences that are retrievable from the instantaneous state of the network. We calculate this
temporal memory capacity for both distributed shift register and random orthogonal connectivity
matrices. We show that the memory capacity of these networks scales with system size.
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FIG. 1 (color online). Architecture of the short-term memory
network. A single input unit s feeds into an N unit recurrent
network. Each of an array of readout units reconstructs the
constant vector of connections from the input source, W input at a given past time.
The brain holds information in short-term memory for
use in prospective action. It is thought that persistent
firing patterns in cortical networks subserve such work-
ing memory and several mechanisms have been proposed
[1]. In some, a stimulus, such as a spoken word or a
picture, activates a pattern of neuronal activity that per-
sists for several seconds because it corresponds to an
isolated stable fixed point of the dynamics [2]. However,
working memory often involves memorization of graded
signals, such as stimulus location in 2D space or the eye’s
gaze, which are hard to associate with discrete attractors.
Recent models propose that short-term memory is asso-
ciated with low dimensional continuous manifolds of
attractors. Both network [3] and single cell mechanisms
[4] have been implicated in generating these manifolds.

More recently it was suggested that a generic recurrent
network can store arbitrary temporal inputs in its tran-
sient responses, even though these responses do not cor-
respond to attractors, and that working memory operates
by reconstructing input history from the network’s cur-
rent state [5,6]. This proposal has been investigated nu-
merically for some recurrent networks but its theoretical
underpinnings are unexplored. For instance, how does a
network’s storage capacity for temporal memory scale
with system size? What network architectures are suit-
able? How do noise and structural perturbations affect
memory? Such issues have important implications for
general dynamical systems. To what extent can the history
of perturbations on a dissipative system be reconstructed
from its current state? How does the transient memory
of a dynamical system depend on its number of degrees
of freedom and the amount of noise? In this Letter
we develop theoretical understanding of the capacity of
linear recurrent networks to store temporal signals.

Model.—We consider here the discrete time model
proposed by Jaeger [6]. A time dependent scalar signal
s�n� is memorized by a linear recurrent network with N
neurons obeying the discrete time dynamics

x �n� � Wx�n� 1� � vs�n� � z�n�: (1)

x�n� gives the network state at time n, v is a unit norm
0031-9007=04=92(14)=148102(4)$22.50 
is the matrix of recurrent connections which need not be
symmetric, and z�n� is a noise vector. To ensure dynami-
cal stability, we require �< 1, where � is the norm
squared of W ’s largest eigenvalue. The goal is to extract
the scalar history of the signal, fs�m�jm � ng, from the
current network state x�n�. This is achieved using a layer
of linear readout neurons, the state of which at time n is
given by fyk�n� � uT

kx�n�; k � 0; 1; 2; . . .g; see Fig. 1. uk is
a constant vector of output connections from the recur-
rent network to the kth readout neuron. It is chosen to
minimize mean square deviations hjyk�n� � s�n� k�j2in
so that yk�n� is close to s�n� k�, where h� � �in denotes a
time average. The resultant optimal output weight is uk �
C�1pk, where C � hx�n�xT�n�in is the covariance matrix
of x, and pk � hs�n� k�x�n�in. The ability to embed
signals in the network may depend on their statistics.
Here we characterize the signal ensemble by hs�n�in � 0
and hs�n�s�n� k�in � �k;0. The noise vectors have zero
mean hz�n�in � 0 and variance hzi�n�zj�n� k�Tin �
��k;0�i;j. With the above signal and noise statistics,
pk � Wkv, and

C �
X1

k�0

pkpT
k � �Cn; (2)

where the scaled noise covariance is Cn �
P

kW
kWkT.
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FIG. 2 (color). Memory capacities of DSR and orthogonal
networks for � � 10�4 and N � 400 at various values of �.
For the orthogonal network, the circles show simulation results
and the solid lines show predictions of the annealed approxi-
mation, which begins to break down for � very near 1. While
the memory of the DSR improves with increasing �, the
capacity of the orthogonal network peaks at �opt � 0:98.
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Memory function.—We define the system’s memory
function as the overlap between the past input and its
reconstructed value, m�k� � hs�n� k�yk�n�in . With the
above statistics,

m�k� � pT
kC

�1pk: (3)

m�k� � 1 corresponds to perfect reconstruction, yk�n� �
s�n� k�, whereas m�k� � 0 indicates no memory of
s�n� k�. For an arbitrary, stable connection matrix W,

X1

k�0

m�k� � TrC�1
X1

k�0

pkpT
k � N � �TrC�1Cn: (4)

This sum rule provides a useful indication of the net-
work’s short-term memory. For zero noise, the area under
the memory function is exactly N, implying that all N
degrees of freedom are useful for storage. Storage ca-
pacity decreases with strength of noise. System perfor-
mance also relates to the shape of m�k�. Since
0 � m�k� � 1, it follows that the length of signal that
can be exactly reproduced is also bounded. To character-
ize the length of time over which a signal can be retrieved
with reasonable accuracy, we define the temporal capacity
kC as the minimum value of k such that m�k�< 1

2 . We fo-
cus particularly on the conditions under which the sys-
tem’s capacity is extensive, namely, kC / N as N ! 1.
For given noise �, we define �opt as the value of � at which
capacity achieves its maximum, koptC .

Distributed shift register (DSR) network.—A straight-
forward candidate for a short-term memory system is a
delay line, or a shift register network, which corresponds
to a one-dimensional network with Wij �

����
�

p
�i;j�1, and

vi � �i;1. One drawback of this system is its extreme
sensitivity to removal of a single neuron. A more robust,
distributed architecture of the shift register operation is a
fully connected network with

W �
����
�

p XN�1

k�1

v�k�1�v�k�T; v�1� � v; (5)

where fv�k�g is an arbitrary set of N orthonormal vectors.
Note that Wv�k� �

����
�

p
v�k�1� for k�N�1 and Wv�N� �0,

implying that WN � 0 [7]. In this network the covariance
matrix is

C �
XN

k�1

��k�1 � ~���1� �k��v�k�v�k�T; (6)

where ~�� � �=�1� ��. The memory function is given by

m�k� �
�k

�k � ~���1� �k�1�
; k � 0; . . . ; N � 1 (7)

and m�k� � 0 for k � N. In zero noise, x�n� �P
N�1
k�0 �k=2s�n� k�v�k�1�. Thus the network embeds each

of the previous N signal values in a distinct orthogonal
direction v�k� for k up to N � 1. An important question in
148102-2
both this and the following models is how the value of �
affects the system performance. In the absence of noise
the present model retrieves perfectly the most recent N
inputs for all values of �, as implied by Eq. (7). However,
the required readout weights uk � ��k=2v�k�1� for the
retrieval of these memories increase with decreasing �,
limiting the choice of � to values close to 1.

Nonzero noise contributes to x�n�, polluting the signal
but leaving fixed the directions along which temporal
signals are embedded. When � > 0, m�k�< 1 for all k.
The capacity kC is greater than 0 for all � < 1. It increases
with decreasing � and saturates to kC � N at zero noise.
For fixed noise, increasing � increases signal-to-noise
ratio and hence m�k� increases; see Fig. 2. Thus �opt � 1
for all values of noise � > 0.

Random orthogonal network.—We next ask whether
broader classes of connection matrices can also store long
temporal signals. A plausible extension of the above
model is to a network with W �

����
�

p
O, where O is an

N � N orthogonal matrix (i.e., OOT � 1) and �< 1.
Similar to the DSR model, W performs a rotation fol-
lowed by a shrinking with factor

����
�

p
. However Wkv and

Wk�1v are not necessarily orthogonal, in contrast to the
DSR. Moreover while WN � 0 for the DSR, orthogonal
W is full rank. Consequently, inputs from times earlier
than N can interfere with current inputs. For any choice of
O and v the covariance matrix is

C �
X1

k�0

�kOkvvTO�k � ~��I; ~�� � �=�1� ��: (8)

However the system behavior can depend upon the par-
ticular O and v. We therefore consider O drawn from the
148102-2
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FIG. 3 (color). Capacity per neuron as a function of � �
N�1� ��, at ��� � 0:04, showing nonmonotonic dependence.
Points from simulations on differently sized systems fall on
essentially the same curve, confirming that in this regime
capacity is extensive. The inset shows the dependence of
kC=N on scaled noise ��� for �opt both in the AA and from
simulation.
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Gaussian orthogonal ensemble and input connections v
from a Gaussian distribution with vTv � 1. We evaluate
m�k� � hpT

kC
�1pki where the average is over these en-

sembles and captures the typical behavior for N large.
Exact analytical evaluation of m�k� is complex and re-
quires accounting for statistical correlations between
powers of random orthogonal matrices. In the following
we solve the problem under the ‘‘annealed approxima-
tion’’ (AA), in which W and v are not quenched in time
but drawn randomly at each time step. Under this
approximation,

m�k� �
�kq

1� �kq
; (9)

where q satisfies

1 � N�1
X1

k�0

�kq

1� �kq
� ~��q: (10)

To see this, first note that in the annealed scenario pk �
v�k�, where fv�k�g is an infinite set of independent random
normalized vectors. Hence,

m�k� � h�kv�k�T�I�C�1
0 �kv�k�v�k�T��1C�1

0 v�k�i; (11)

where C0 � C� �kv�k�v�k�T is independent of the ran-
dom variable v�k�. Expanding in powers of �k and aver-
aging over v�k� yields Eq. (9) for the memory function
where

q � hv�k�TC�1
0 v�k�i �

1

N
hTrC�1

0 i �
1

N
hTrC�1i: (12)

The last equality holds for large N because hTrC�1i �
hTrC�1

0 i � �khv�k�TC�2
0 v�k�i, which is of order 1 due to

the normalization of v�k�. Equation (10) for q is obtained
from the sum rule Eq. (4) by substituting Cn �
�1� ���1I. Though the annealed approximation neglects
quenched correlations, it agrees surprisingly well with the
numerical solution of the quenched system for all �
values except for � ! 1, seen in the examples of Fig. 2
for � � 10�4.

To analyze the network’s behavior, we first consider the
limits �1� ��=N, �=N ! 0 for N ! 1. In this case, the
sum of m�k� is finite so Eq. (10) gives q � 1=~""; and thus
Eq. (9) reduces to

m�k� �
�k

�k � ~��
; k � 0; 1; 2; . . . (13)

Capacity is nonzero for ~�� < 1, in which case kC �
log�~���= log���. Here �opt��� is less than unity and de-
creases with increasing noise because it results from a
balance between signal suppression on one hand and
amplification of error input � by the factor �1� ���1 on
the other. For small �, maximizing kC with respect to �
yields �opt � 1� �e and kC��opt� � 1=�e. For � ! 1,
148102-3
�opt ! 0 and kC ! 0. Equation (13) is exact in the limit
of large N if � and � are kept fixed.

In order to yield extensive capacity, � and 1� � must
decrease inversely with N, so that 1� � � �=N and
� � ���=N with � and ��� finite. To see that in this case kC
scales with system size N, we write q � exp����.
Capacity kC � �N is extensive for � � O�1� and
kC � 0 for �< 0; see Eq. (9). The sum rule Eq. (10)
determines the value of �. In the present regime the
sum can be approximated by an integral, yielding

� � log�1� exp����� � ��� exp����: (14)

Solving for � yields a nonmonotonic function of � (see
Fig. 3) which attains its maximum at �opt. For � < �opt,
� decreases with decreasing � and �< 0 for � smaller
than the critical value �� � log�2� � ���. For large noise,
i.e., ��� � 1, �opt increases with noise level as �opt � e ���,
as in the finite capacity limit. However, at low noise
levels �opt does not approach 0 (as predicted by the fi-
nite capacity limit) but increases with decreasing ��� as
�opt � 1

2 log�1= ����. This is because for ��� sufficiently small
and � sufficiently close to 1, strong long-time interfer-
ence prevents faithful reconstruction even of recent
inputs. Therefore, �opt < 1 even in the ��� ! 0 limit.
Additionally, choosing � close to �opt reduces retrieval
error for values of k < kC. This behavior is demonstrated
in Fig. 2. As in the DSR model, the choice of � should be
bounded not only by capacity limits but also by the
magnitudes of the output weights which increase with �
roughly as kukk � ��k=2 � exp��k=N� at zero noise.

The annealed approximation.—An interesting issue is
the range of validity of the annealed approximation. As
indicated above, finite capacity results should be exact in
148102-3
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FIG. 4 (color). Numerical calculation of the memory function
of Gaussian random matrices for ��� � 0:01, � � 0:999 and
different system sizes. Results are averages over 50 realizations
of the connectivity matrix. Exploring different values of � we
find that up to the above mentioned value the memory improves
with increasing �. Increasing � beyond this value results in
irregular and highly variable m�k�.
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the large N limit with fixed noise and suppression coef-
ficient. In this limit, at any given time only a small
number of directions in x space contribute to the current
state and, since O is random, the correlations among them
are negligible. On the other hand, when � and 1� � are
proportional to 1=N, the number of unsuppressed modes
is of order N and hence the combined effect of their
correlations become important. Breakdown of the AA
occurs when memory of early times begins to decrease
due to strong long-time interference. Our simulations
indicate that this occurs for � � N�1� �� & 10, as
seen for small � in Figs. 2 and 3. Derivation of a full
quenched theory requires appropriate handling of the
intricate correlations among high powers of random or-
thogonal matrices.

Robustness.—Our results show that systems with the
DSR or orthogonal architectures are tolerant to stochastic
noise in their network dynamics up to noise amplitudes
significantly larger than 1=N. An important issue is the
sensitivity of the network to structural noise. We have
tested numerically the robustness of the orthogonal re-
current network to neuron deletion. We find that this
perturbation does not affect drastically the capacity of
the system provided that the output weights are retrained
after the neuron’s removal, in contrast to the simple delay
line. If the output weights are not retrained, however,
capacity drops substantially. Therefore for this to be a
viable model of working memory, the system would need
to relearn weights uk sufficiently quickly upon neuron
loss [6]. Note also that these results imply that W need not
148102-4
be exactly orthogonal since neuron removal is also a
perturbation away from orthogonality.

Random Gaussian matrices.—In this work we have
assumed rather special network architectures. On the
other hand, there are claims that any generic (stable)
connection matrix W can robustly store long temporal
signals [5,6]; if substantiated, this is indeed a powerful
result. The theoretical study of more generic ensembles is
difficult. However, our simulations of fully connected
Gaussian random matrices indicate that their capacity is
not extensive. If � � 0 and � is sufficiently small then it is
likely that m�k� � 1 for k � N and 0 for larger N, as is the
case in the models studied here. This is because, for small
�, interference from long past times is negligible and
hence the sum rule Eq. (4) implies the above square
form for m�k�. However, this capacity is unusable in large
systems because it requires exponentially large output
weights (reflecting the near singularity of the correlation
matrix C). Taking � close to 1, so that C is well condi-
tioned, results in strong fluctuations in m�k� and does not
seem to yield extensive capacity. The presence of noise
also regularizes the system but again does not contribute
to give extensive capacity, as indicated in Fig. 4. We are
currently developing a fuller understanding of the short-
term memory properties of generic connectivity matrices.
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