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Instability of the Quantum-Critical Point of Itinerant Ferromagnets
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We study the stability of the quantum-critical point for itinerant ferromagnets commonly described
by the Hertz-Millis-Moriya (HMM) theory. We argue that in D � 3 long-range spatial correlations
associated with the Landau damping of the order parameter field generate a universal negative,
nonanalytic jqj�D�1�=2 contribution to the static magnetic susceptibility �s�q; 0�, which makes HMM
theory unstable. We argue that the actual transition is either towards incommensurate ordering, or first
order. We also show that singular corrections are specific to the spin problem, while charge suscepti-
bility remains analytic at criticality.
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q. This assumption is based on the belief that in itinerant netic susceptibility �s�q� remains analytic in q. We then
The critical behavior of itinerant paramagnets at the
onset of ferromagnetic ordering is the subject of intensive
experimental [1] and theoretical [2,3] studies. Of particu-
lar interest is the existence of a ferromagnetic second-
order transition at low temperatures, and the emergence
of superconductivity near the phase boundary. The criti-
cal theory of itinerant ferromagnets was developed by
Hertz, Millis, and Moriya [4] (HMM) and is based on the
action of the form

S �
Z
ddqd!m

�
��2 � q2 �

j!mj

jqj

�
�2
q;!

� b4�4 � b6�6 � � � � ; (1)

where � is a bosonic field associated with the order pa-
rameter, and � is the correlation length, which diverges at
the phase transition. The two assumptions behind Eq. (1)
are that the b2n;n	2 terms are nonsingular and can be
approximated by constants, and that the static spin sus-
ceptibility has a regular q2 momentum dependence. The
HMM theory has been successfully applied to explain
quantum-critical behavior in a number of materials [1];
however, its key assumptions have been questioned in re-
cent studies [5,6]. The analyticity of the b2n terms was
analyzed in detail for an antiferromagnetic transition
where it was demonstrated that, for D � 3, all b2n pre-
factors do have nonanalytic pieces which depend on the
ratio between momenta and frequencies of the � fields
[5]. For a 2D antiferromagnetic quantum-critical theory
(2D fermions and 2D spin fluctuations) these nonanalytic
terms give rise to singular vertex corrections [5]. For a
2D ferromagnetic case, nonanalytic terms in b2n are still
present; however, we found that they do not give rise to an
anomalous exponent in the spin susceptibility for D > 1
and therefore are not dangerous.

In this Letter, we question another key assumption of
the HMM theory, namely, that the momentum depen-
dence of the static spin propagator is analytic at small
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ferromagnets the q dependence of the �2 term comes
solely from fermions with high energies, of order of EF,
in which case the expansion in powers of �q=pF�2 should
generally hold for q
 pF. This reasoning was disputed
in Refs. [6,7]. These authors considered a static spin
susceptibility �s�q� in a weakly interacting Fermi liquid,
i.e., well away from a quantum ferromagnetic transition,
and argued that for D � 3 and arbitrary small interac-
tion, the small q expansion of �s�q� begins with a non-
analytic jqjD�1 term. This nonanalyticity originates from
a 2pF singularity in the particle-hole polarization bubble
[6–8] and comes from low-energy fermions with energies
of the order of vFq
 EF. In Ref. [6], it was further
argued that within the RPA, the nonanalyticity in �s�q�
gives rise to the emergence of a nonanalytic jqjD�1�2

q;!
term in Eq. (1). Furthermore, the prefactor of this term
turns out to be negative, which signals the breakdown of
the continuous transition to ferromagnetism.

The weak point of this reasoning is that within the RPA
one assumes that fermionic excitations remain coherent at
the quantum-critical point (QCP). Meanwhile, it is
known [9] that, upon approaching the QCP, the fermionic
effective mass m� diverges as log� in D � 3 and as �3�D

in smaller dimensions. We checked that m=m� appears as
a prefactor of the jqjD�1 term; this term vanishes at the
QCP. Does this imply that Eq. (1) is valid at the transi-
tion? Not necessarily, since one has to verify explicitly
whether or not the divergence of m� completely elimi-
nates a nonanalyticity in �s�q� or just makes the non-
analytic term weaker than away from QCP. If the latter is
true, the nonanalytic term can still be much larger than q2

at small q at criticality.
In this Letter, we report explicit calculations which

show that the nonanalytic term is still present at the
QCP and accounts for the breakdown of the HMM
theory. We first consider the problem in the Eliashberg
approximation and argue that this approximation leads
to a non-Fermi liquid behavior at the QCP, but the mag-
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FIG. 1. The two lowest-order diagrams for the corrections to
the static spin susceptibility. The self-energy insertion is ��p�;
the frequency dependent piece ��!m� is already incorporated
into ‘‘zero-order’’ Eliashberg theory.
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demonstrate that the corrections to the Eliashberg theory
are singular and give rise to a universal contribution to
��1
s �q� in the form q�, with � � 2 for D � 3 and a

negative prefactor. We show that this universal contribu-
tion makes the ferromagnetic QCP unstable and gives rise
to either a continuous transition into a spiral state or a
first-order transition into a ferromagnet.

The model.—The starting point for our theory is a
low-energy effective spin-fermion Hamiltonian obtained
by integrating the fermions with energies between fermi-
onic bandwidth W and 
 
 W out of the partition func-
tion [3,9]:

H �
X
p;�

vF�p� pF�c
y
p;�cp;� �

X
q

��1
s;0 �q�SqS�q

� g
X
p;q

cyp�q;���;�cp;�Sq: (2)

Here Sq describe collective bosonic degrees of freedom in
the spin channel, and g is the residual spin-fermion
coupling. The upper cutoff 
 is roughly the scale up to
which fermionic dispersion can be linearized near the
Fermi surface. The bare spin susceptibility �s;0�q� is as-
sumed to be analytic at q
 pF and have an Ornstein-
Zernike form �s;0 � �0=��

�2 � q2�. The coupling and �0

appear in the theory only in the combination �gg � g2�0.
The perturbation theory for Eq. (2) is an expansion into

two parameters [3]:

� �
33=4

4�
�gg
EF

and � �
3

4�
�gg

vF��1 
 ���pF�; (3)

where EF is the electron’s Fermi energy and the prefactor
in � is chosen for future convenience. We assume that �gg
is small compared to EF; i.e., � is a small parameter
[3,10]. That g
 EF is in line with the very idea of a
separation between high-energy and low-energy physics.
At the same time, near a ferromagnetic QCP, � diverges,
and the dimensionless coupling � / � is large. Fortu-
nately, one can solve explicitly the strong coupling prob-
lem in � while keeping the zeroth order in � [3,9]. This
amounts to neglecting the vertex correction �g=g and the
momentum-dependent piece in the self-energy ��p�,
which are of next order in �. The analogous theory for
electron-phonon interaction is known as Eliashberg
theory [11].

Eliashberg theory.—The Eliashberg theory for a fer-
romagnetic quantum-critical point has been described in
detail in the literature [3,9]. The results are presented here
forD � 2, but their validity holds for generalD � 3. The
elements of the theory are coupled fermionic and bosonic
self-energies ��!m� and 
�q;!m� � ��!m�=jqj, respec-
tively [3] fG�1�p;!m� � i�!m ���!m�� � vF�p� pF�;
�s�q;!m� � �0=�q2 � ��2 �
�q;!m��g. The self-
consistent solution yields ��!m� � �j!mj, where � �
�ggpF=��v

2
F�, and

��!m� � �!mf
�
�pF��

3!m �gg

E2
F

�
; (4)
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where f�0� � 1, f�x� 1� � �32�=3
���
3

p
x�1=3, and EF �

pFvF=2. At the QCP, � � 1 and ��!m� � !2=3
m !1=3

0 ,
where !0 � �2EF is the typical bosonic frequency of
our problem. Note that !0 
 EF. The !2=3 dependence
of � implies that at the QCP, the Fermi-liquid description
is broken down to the lowest energies. At the same time,
Eliashberg theory reproduces the form of the spin propa-
gator from Eq. (1), �s�q;!m�/ ���2�q2��j!mj=q�

�1.
Alternatively speaking, in the Eliashberg approximation,
the Fermi liquid is destroyed at QCP, but the magnetic
transition remains continuous, and �s�q� is analytic.

Beyond Eliashberg theory.—The validity of the
Eliashberg theory is generally based on Migdal’s theorem
that states that vertex correction �g=g and ��p� are small
when the bosonic velocity vB is much smaller than vF. In
our case, a posteriori analysis of typical bosonic and
fermionic momenta which contribute to ��!� and ��!�
within the Eliashberg theory shows that for the same!

!0, typical qB 
 ��!0�

1=3 
 �pF, while typical fermi-
onic momenta jp� pFj 
!0=vF 
 �2pF are much
smaller. This implies that for �
 1, the effective bo-
sonic velocity vB 
 �vF is much smaller than vF; i.e.,
Migdal’s theorem is valid. To verify this, we computed the
corrections to @��p�=@p and to the static vertex in the
limit of zero bosonic momentum and for external fermi-
ons at the Fermi surface and at zero frequency and indeed
found �1=2 smallness.

Still, this does not immediately imply that �s�q� re-
mains analytic beyond Eliashberg theory. To verify this,
we have to go beyond the limit of zero momentum,
evaluate the correction to the static susceptibility at a
finite q, and check whether it remains analytic in q. Let
us do this. Consider, e.g., the diagram in Fig. 1(a) with the
insertion of ��p� into the particle-hole bubble.
Expanding this diagram to order q2 we find that it scales
as q2I, where

I /�2 E
3
F

�1=3

Z dlxd�j�j2=3

�vFlx� ij������j�5
S
�

l2x
�j�j��2=3

�
: (5)

Here l2 � l2x � l2y, and S�� � �� 
 �j�j��1=3
R
dly=

�l2 � j�j�=jlj� is, up to a prefactor, the boson propagator
integrated along the Fermi surface. In the two limits,
S�0� � O�1� and S�x� 1� / x�1=2. The integrand for I
has a highly degenerate pole in the upper half-plane of lx,
at vFlx / j������j. This degenerate pole can be
avoided by closing the integration contour in the lower
147003-2
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half-plane of lx, in which case the nonvanishing part in I
comes from the nonanalyticity in S�x�. This physically
implies that fermions undergo forced vibrations at typical
bosonic frequencies. The issue then is what is the typical
bosonic x for the nonanalyticity in S�x�. By analogy with
the electron-phonon problem, one could expect that cor-
rections to the Eliashberg theory come from the processes
in which typical bosonic frequencies are near bosonic
mass shell. Then typical lx are of order ����1=3 as in the
Eliashberg theory; i.e., typical x in S�x� are of order 1.
Substituting this typical x into (5), we obtain I 
 �1=2,
i.e., a small and an analytic correction to the static sus-
ceptibility ��s�q� / q2�1=2. However, a careful examina-
tion of the scaling function S�x� reveals that it is
nonanalytic already at the smallest x, such that there is
another contribution to I from bosons vibrating at typical
lx comparable to those near the fermionic mass shell.
Indeed, expanding S�x� in powers of x at x
 1 we
obtain, to logarithmical accuracy,

S�x� � 1�
3

���
3

p

8�
l2x

��j�j�2=3
log�l2x�: (6)

The logl2x term is the most important here —its presence
implies that S�x� possesses a branch cut along the imagi-
nary axis of lx down to the smallest lx. One can easily
make sure that this logarithmic singularity is the conse-
quence of the �=jlj nonanalyticity of the Landau damp-
ing piece in the bosonic propagator, i.e., of the existence
of the long-range spatial component of the dynamical
susceptibility. Substituting the small x form of S�x� into
(5) and evaluating integrals, we find a much larger, di-
vergent contribution to I which behaves as jqj�1=2. This
implies that the low-q expansion of ��s is actually non-
analytic in q and begins as q3=2. Performing an explicit
calculation without expanding in q, and combining the
results from the two diagrams for ��q� in Fig. 1 we obtain
for the static spin susceptibility

�s�q� �
�0

q2 � 0:17jqj3=2p1=2
F

: (7)

Observe that the q3=2 term in (7) is not small in �. This is
not surprising, since the only excitations involved are
those near the fermion mass shell, while � measures how
soft the mass shell bosons are compared to the mass shell
fermions. Note in passing that the self-energy insertion
in the diagram of Fig. 1(a) is not a double counting, since
the correction to static susceptibility comes only from
the momentum-dependent piece in the self-energy. The
frequency-dependent ��!� is already incorporated at the
zero-order level, and it does not affect �s�q�.

The nonanalyticity of the correction to the susceptibil-
ity and the disappearance of � could be also detected by
analyzing vertex corrections away from the limit of
q � 0 and zero fermion frequency !. Indeed, evaluat-
ing �g�q;!�=g at finite q and !, we obtain
147003-3
�g�q;!� / g�1=2 
�
m �gg

q2
;
!
EF

�
; (8)

where  �x
1;y
1�/
���
x

p

1, and  �x�1;y
1��

1�A�logy�=
���
x

p
, A � O�1�. We see that, although

 �x; y� � 1 (i.e., vertex correction is small in �1=2), the
small q expansion of �g�q�=g begins as �1=2jqjj log!j=�������
m �gg

p

 jqjj log!j=pF; i.e., it is nonanalytic in q and in!,

and the jq log!j term does not contain �1=2. This singular
term again comes from fermions near their own reso-
nance and can be traced back to the nonanalyticity of the
Landau damping term. Substituting this �g�q;!� into the
susceptibility diagram and performing computations we
find that log! dependence makes ��s�q� nonzero in the
static limit (without it, the correction would be propor-
tional to ��!� and vanish at ! � 0), and the overall
power of q is jqj from the vertex correction times the
ratio of typical ! and vFlx. As typical vFlx 
��!� /
!2=3, this ratio yields !1=3 / �lx�

1=2 
 q1=2; hence the
overall power in ��s�q� is q3=2, as above.

What happens with higher-order terms? We analyzed
higher-order particle-hole insertions into the susceptibil-
ity bubble and found that they add only small, O��1=2�,
corrections to the q3=2 term in (7) since at least one in-
ternal momentum is near the boson mass shell. Higher-
order particle-particle insertions give rise to O�1�
corrections to the q3=2 term and, in principle, should be
included. However, the nonsmallness of particle-particle
insertions is not specific to our problem and is, in fact,
customary in Eliashberg-type theories [2,5,3,11,12,10].
Particle-particle vertex corrections are known to give
rise to a pairing instability close to the ferromagnetic
QCP at Tc � O�!0�, which implies that there exists a
dome around the QCP where the normal state analysis is
invalid. However, a ferromagnetic Tc has an order of
magnitude of roughly Tc � 0:015!0 [3]. Hence the typi-
cal bosonic momenta for the pairing are of order
0:01�pF, much smaller than typical q in Eq. (7). Be-
cause of this separation of energy scales, we do not expect
particle-particle insertions to be relevant.

Equation (7) is the central result of our Letter. It shows
that the static susceptibility becomes negative around a
ferromagnetic QCP at q < q1 � 0:029pF. Although the
prefactor is small, q1 is parametrically larger than the
typical fermion and boson momenta that contribute to
the fermion self-energy in the quantum-critical regime
(jk� kFj 
 �2pF and qB 
 �pF, respectively). This im-
plies that the whole quantum-critical region is, in fact,
unstable. Alternatively speaking, Z � 3 quantum-critical
behavior at a ferromagnetic transition is internally de-
stroyed by infrared singularities associated with the non-
analytic momentum dependence of the Landau damping.

A negative static susceptibility up to a finite q implies
either that the instability occurs when ��1 is still finite,
into an incommensurate state with a finite jqj 
 q1 [13],
or the ordering is commensurate, but the magnetic tran-
sition is of the first order. Which of the two scenarios
147003-3
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holds remains to be studied. We also verified that away
from the QCP, when � is finite, the q3=2 term transforms
into jqj��1 at the smallest q. The interpolation formula
between the q3=2 and jqj forms is rather involved and we
do not present it here.

For arbitrary D< 3, our calculations yield the ‘‘cor-
rection’’ to ��1

s in the form jqj�D�1�=2, again with a
negative prefactor. In 3D it scales as q2 logjqj. Hence,
HMM theory is destroyed for all D � 3. For D > 3, the
correction term is smaller than q2, and HMM theory
survives.

Charge susceptibility and gauge theory.—We repeated
the same calculations for the charge susceptibility and
found inD � 2 that the singular jqj3=2 terms from the two
diagrams in Fig. 1 cancel each other, and the q2 behavior
survives. The same holds for the propagator of the gauge
field — singular jqj3=2 terms from self-energy and vertex
correction insertions into the particle-hole bubble again
cancel each other. We verified the cancellation of non-
analytic terms for the second-order diagrams as well.
Furthermore, we verified in two orders of perturbation
that the momentum dependence of �c�q; 0� comes in
powers of �q=pF�2; i.e., it is entirely due to the existence
of a curvature of the dispersion. Physically, the distinc-
tion between spin and charge susceptibilities is in that the
�=jqj singularity in the dynamical particle-hole re-
sponse function (which generates the q3=2 nonanalyticity)
is sensitive to a magnetic field but is insensitive to the
change of the chemical potential. Hence, the singularity
shows up in the total spin response but does not appear in
the total charge response [14]. Mathematically, this dis-
tinction is due to the presence, in the spin case, of the
Pauli matrices in the vertices of the diagrams in Fig. 1,
such that the self-energy and vertex correction diagrams
do not cancel each other. Note that the cancellation or
noncancellation of the singularities is not directly related
to the conservation laws for charge and spin suscepti-
bilities, since conservation laws require only that
�c�q � 0; !� and �s�q � 0; !� vanish but impose no
constraints on the forms of the susceptibilities in the other
limit of finite q and zero frequency. More specifically,
Fermi-liquid relations between �s;c�q! 0; ! � 0� and
�s;c�q � 0; !! 0� imply [15] that �s;c�q! 0; ! � 0� !
Cst but impose no formal constraints on the form of the
actual q dependence in �s;c�q;! � 0� at finite q.

To summarize, we studied the stability of the
quantum-critical point for itinerant ferromagnets, in the
limit when the spin-fermion coupling is much smaller
than the bandwidth, and one would naively expect
Eliashberg theory to be valid. Within Eliashberg theory,
the Fermi-liquid is destroyed at criticality, but the mag-
netic transition is still continuous and is described by
bosonic Hertz-Millis-Moriya action. We demonstrated,
however, that in D � 3, long-range spatial correlations
associated with the Landau damping of the bosonic order
parameter field break the Eliashberg theory and give rise
to a universal, negative, nonanalytic jqj�D�1�=2 contribu-
147003-4
tion to the static magnetic susceptibility �s�q; 0�. This
term makes the continuous critical theory unstable. We
argued that the actual transition is either towards incom-
mensurate ordering or first-order into a commensurate
state. We also demonstrated that singular corrections are
specific to the spin problem, while charge susceptibility
remains analytic at criticality.
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