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Impeded Growth of Magnetic Flux Bubbles in the Intermediate State Pattern
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Normal state bubble patterns in type I superconducting indium and lead slabs are studied by the high
resolution magneto-optical imaging technique. The size of bubbles is found to be independent of the
long-range interaction between the normal state domains. Under bubble diameter and slab thickness
proper scaling, the results gather onto a single master curve. We calculate the equilibrium diameter of an
isolated bubble resulting from the competition between the Biot-and-Savart interaction of the Meissner
current encircling the bubble and the superconductor-normal interface energy. A good quantitative
agreement with the master curve is found over two decades of the magnetic Bond number. The isolation
of each bubble in the superconductor and the interface energy are shown to preclude any continuous size
variation of the bubbles after their formation, contrary to the prediction of mean-field models.
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A great variety of quasi-two-dimensional, biphasic
systems presents a spontaneous formation of domain pat-
terns: magnetic liquids [1], Langmuir monolayers [2],
submonolayer of adsorbed atoms [3], ferro- and ferrimag-
netic films [4], intermediate state (IS) in type I super-
conducting (SC) materials [5]. These structures are
mostly interpreted as resulting from the balance between
long-range repulsive, electrostatic, magnetic, or elastic
interactions between domains and short-range attractive
interaction associated with a positive interface energy.
The observed patterns are generally disordered and con-
sist of bubbles and of branched and intricate fingered
structures (lamellae). At present the mechanisms of the
formation of these structures are theoretically actively
studied [6—8]. In particular, for magnetic fluids, the in-
stabilities of bubble circular shape was shown to produce
fingered structures which are similar to those observed
experimentally [6]. The same mechanism was proposed
for the IS in type I superconductors [9]. However, little is
known even about the static properties of bubble patterns
[10]. This question is of prime importance for the study of
IS patterns formation since normal state (NS) bubbles
form the early stage of the IS when the magnetic flux
starts to penetrate into SC samples [5].

IS patterns are observed in slabs placed in a perpen-
dicular magnetic field. They consist of SC and NS, flux-
bearing domains [5]. Former studies were essentially
focused on the lamella structures [5]. The free energy of
a one-dimensional lattice of infinitely long and parallel
stripes was first calculated by Landau [11]. The field-
dependent predicted and measured periods of the stripes
were found in good agreement [12]. Subsequently, their
comparison became a conventional method for determin-
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ing the interface energy of type I SC materials. The for-
mation of lamellae was recently reexamined by Dorsey
et al. and in the framework of a ““current-loop”” model [9].
These authors propose to consider IS patterns as a set of
domains of arbitrary shapes with vertical domain walls
and bounded by current loops interacting in the free space
above and below the slabs [9]. When applied to the stripe
pattern the model predicts equilibrium periods close to
those found using the Landau model, thus indicating that
both models essentially capture the same physics. As the
model is formulated for arbitrary domain shape, it opens
the way to study the formation of bubble patterns
whose conditions of existence and control parameters
are not well understood. To our knowledge, the only
calculation of the free energy of a hexagonal lattice of
bubbles uses an approximate expression of the magnetic
interaction energy [13]. Subsequent experiments found a
field-dependent bubble spacing different from the pre-
dicted one. They also yield a smaller interfacial tension
than the one deduced from the studies of stripe patterns
[13—16]. In view of these scarce and contradictory results,
it cannot be established whether bubble patterns corre-
spond to a quasiground state as is the case for stripe
patterns. Furthermore, the onset of the formation of the
IS was shown to result from the penetration of bubbles
from the edges of samples [17]. The magnetic flux pene-
tration is controlled by an energy barrier of geometrical
nature [18,19]. This raises the question of the respective
contributions of the mechanism of flux penetration and of
the balance between long-range and short-range interac-
tions on the formation of bubble patterns.

This Letter presents a systematic study of NS bubble
patterns as a function of the SC material, the slab
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thickness, and the applied magnetic field. Contrary to the
lamellae width, the diameter of the bubbles is found
to be independent of the mutual interaction between
flux-bearing domains. We discuss the origin of these
different behaviors in terms of magnetic flux penetration
mechanisms.

The domain patterns are observed with the high reso-
lution Faraday microscopy technique which probes the
normal component of the local induction at the top sur-
face of a superconductor. Experimental details are given
elsewhere [20]. The SC Pb slabs were cut out from Good-
Fellow 99.9% pure and annealed 25 and 120 £1 um
thick foils. The magneto-optic layer (MOL) consisted of
a 1500 A EuS film evaporated on a glass substrate and
covered with a 600 A Al mirror. The Pb slab was com-
pressed against the mirror. The In slabs (0.6, 1.1, 1.5,
2.2,10.0 = 0.1 pm thick) were obtained by evaporation
directly onto MOLs. The MOLs consisted of CdMnTe/
CdMgTe semiconductor heterostructures grown by mo-
lecular beam epitaxy [21]. The samples were immersed
into superfluid helium at temperatures 7 < 2 K. They
were subjected to an increasing perpendicular magnetic
field H whose maximum value equals 60 mT.

Figure 1 shows typical IS patterns observed on the edge
of a 10 pum thick indium slab for two values of the re-
duced applied magnetic field 7 = H/H,, where H, is the
thermodynamical critical field. Increasing 4 results in the
penetration of the magnetic flux from the edges of the slab
which is revealed by a significant increase of the density
of NS domains. At low & value (left image), NS domains
essentially consist of almost circular bubbles. They were
systematically observed over a limited range of low 4 val-
ues. At higher h value (right image), lamellae have ap-
peared. They progressively form labyrinthine structures.

While most of the lamellae are connected to the slab
edges from which the magnetic flux enters, bubbles are
isolated in the SC matrix and separated from the edges by
a full diamagnetic band (=50 wm large). Let us note that
(i) the interaction between isolated NS domains is repul-

FIG. 1. Intermediate state pattern on the edge of the 10 um
thick superconducting indium slab for 4 = 0.07 (left) and h =
0.41 (right) at T = 2 K. The edge of the In slab is along the
right edge of the images. Normal and superconducting domains
appear in black and gray, respectively. The few white domains
correspond to magnetic flux which was trapped at &7 = 0 (de-
tails on image processing are given in Ref. [20]).
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sive and (ii) the diamagnetic band reflects the presence of
the geometrical energy barrier that prevents spontaneous
flux penetration on the edges [18,19]. Therefore differ-
ent formation and growth mechanisms are expected for
bubbles and lamellae.

In order to get more insight into this question, the
variation of the bubble diameter 2R and the lamella width
W were measured systematically as a function of 4. They
were then compared to their respective equilibrium val-
ues 2R,y and W, calculated for regular arrays. Figure 2
presents the results obtained for a 10 um thick In slab
(left) and for a 120 wm thick Pb slab (right). For the
lamella pattern, W, is calculated from Egs. (3.23) and
(4.3) of Ref. [9]. For the bubble pattern, R is calculated
in the framework of the current-loop model [9]. NS
bubbles with radii R are assumed to be arranged in a
hexagonal lattice of period a in an infinite slab of thick-
ness d. The magnetic field in the bubbles is equal to H [9].
From the constraint of global flux conservation the area
fraction of NS domains p, = 27R?//3a% is equal to h =
H/H,. The interface energy E, is the product of the
interfacial tension o,; = (H2/8m)A by the total area of
the interfaces 2N7wRd, where N and A are the total
number of bubbles and the “wall” energy parameter,
respectively. The magnetic energy per unit area resulting
from the self- and mutual interaction between the screen-
ing currents flowing at the interfaces is found equal to
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FIG. 2. Mean lamella width W (top) and bubble diameter 2R
(bottom) as a function of the reduced field h = H/H, for a
10 pm thick In slab (left) and a 120 um thick Pb slab (right).
The error bars represent the full width at half maximum of the
distributions of lamella width or bubble diameter. The solid
lines are the equilibrium values 2R.; and W,.
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with s = \/4(m? + 1> — mt)/3, y = 1[27\/3p,. J, is the
Bessel function of the first kind, N, = d/#A is the mag-
netic Bond number [9], and €,, is expressed in units of
0,s. The equilibrium period a., is obtained by mini-
mizing the reduced total energy per unit area e(a) =
€inc T €. Req 1s then obtained from flux conservation

as Ry = aeq\/\/gh/Zﬂ'. H_(T) was assumed to follow a

Bardeen-Cooper-Schrieffer ~ temperature  variation:
H.(T) = H.(0)[1 — (T?/T?)]. H.(0) is 28.2 and 80.3 mT
and 7T, is 3.4 and 7.2 K for indium and lead, respectively.
A(T) was assumed to follow the empirical law A(T) =
A(0)/\/1 —(T/T,) as proposed in Ref. [22]. A(0) values
were taken from the literature: for Pb, A(0)=
0.056 um[5]; for In, A(0) = 0.33 um [22].

For the lamellae, W and W, present a good quantita-
tive agreement, as often reported in the literature [see
Figs. 2(a) and 2(b)]. The slight discrepancy obtained for
Pb, for & > 0.65, may be attributed to the fact that an
important fraction of the lamellae remains isolated
among bubbles. Surprisingly, the measured bubble diame-
ter 2R is found to remain almost constant, as A is in-
creased, in disagreement with the theoretical predictions
[see Figs. 2(c) and 2(d)]. The maximum ratio between
2R, and 2R is of the order of 1.6 and 4 for In and Pb,
respectively. However, 2R approaches 2R, for h — 0,
thus suggesting that the disagreement does not originate
from the approximations used in the model of Ref. [9].

To clarify this point, the bubble diameter 2R was
measured for different slab thicknesses d and compared
to 2R2q, the limit of 2R, calculated for 2 — 0. In this
limit, the magnetic energy is determined only by the self-
interaction of the screening currents flowing at each
bubble interface. We find that 2R8q is the solution of the
implicit equation:

_ 712 -
N, — %[1 + %[(k2 —2)E(k) +2(1 — kz)K(k)]} :
()

with k¥ = 4R0?/(d* + 4R%?). K and E are the complete
elliptic integrals of the first and the second kind, respec-
tively. Equation (2) is transformed into a relation between
the reduced variables 2R, /A and d/A as plotted in Fig. 3.
The same figure reports the results obtained by us and by
other authors with different SC materials (In, Pb, and Hg)
[23]. Scaling 2R and d by the wall energy parameter A
allows one to gather all the measured diameters onto a
single master curve. This demonstrates that 2R/A and
d/A are appropriate reduced variables to describe the
bubble patterns. Furthermore, the magnetic Bond number
N, = d/wA varies over the full range of existence of
nonbranching IS patterns (1 < N, < 1000) [13,24]. For
smaller Bond numbers the gray region in Fig. 3 indicates
the occurrence of type II superconductivity below a criti-
cal thickness d.. Indeed, no IS domains were observed for

the thinnest In slab (d = 0.6 pwm).
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FIG. 3. Semilog plot of the reduced bubble diameter 2R/A
versus reduced sample thickness d/A. The filled circles and
squares were obtained with In and Pb slabs, respectively. The
empty squares, lozenges, and circles are reported from
Refs. [14-16], for Pb, Hg, and In, respectively. The gray region
corresponds to type II superconductivity for very thin slabs.
The solid curve is the equilibrium diameter [Eq. (2)].

The comparison between the master curve and the pre-
diction of Eq. (2) shows that two ranges of d/A values can
be distinguished. For d/A <30, 2R values are found
slightly smaller than 2R.,. In this range of thickness,
the assumption of a constant A is no longer valid. As
the thickness decreases towards the critical value d,. the
interfacial tension (positive for a type I superconductor
and negative for a type II one) should decrease. Indeed
adjusting the experimental data to the predicted curve
leads to a continuous decrease of A with decreasing d (not
shown here). The critical thickness at which A — 0 was
found equal to d. = 0.8 um, a value consistent with d, =
0.9-1 pwmreported for In in Ref. [13]. Therefore, the poor
agreement found for d/A <30 most likely originates
from the reduction of the interface energy when the slab
thickness is decreased. For d/A > 30, the master curve
presents a very good quantitative agreement with the
prediction of Eq. (2). This shows that the bubble mean
diameter is determined by the balance between the inter-
facial tension and the self-interaction of the screening
current flowing at the bubble interface. While the bubble
diameter remains constant when / increases, as shown in
Fig. 2, the mutual interaction between the bubbles serves
to adjust the mean distance between them so that the area
density of NS domains p,, is very close to the equilibrium
value. We calculate that the bubbles free energy is only
~1% larger than the equilibrium value. The reason is that
volume terms depending on p,,, but not on the period, are
dominant in the free energy. Hence the bubble system is
only in a very slightly out-of-equilibrium state.

These results raise the question of the growth mecha-
nisms of NS domains. For the lamellae, the good agree-
ment between the predicted and the measured width
suggests that their growth is continuous and reversible,
as assumed by the IS models. This most likely results
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from the fact that lamellae are connected to the edges of
the slab, thus allowing infinitesimal amounts of magnetic
flux to penetrate continuously from the exterior. This is
not the case when NS domains are isolated within the SC
matrix. As the flux density is uniformly equal to zero in
the matrix, it follows from the constraint of flux conser-
vation that the increase of the size of an isolated NS
bubble has to result from the incoming of another NS
bubble crossing the surrounding SC region. The fusion of
these two bubbles is impeded by their repulsive interac-
tion. Moreover, surface tension prevents the formation of
bubbles of size much smaller than 2qu. This precludes
the continuous and reversible growth of bubbles. There-
fore, they have to keep the size acquired during their
formation as it is observed experimentally. A similar phe-
nomenon should be encountered in other physical systems
for which the mechanism of growth of isolated domains
requires the migration of particles or of flux lines through
a second phase. For example, in a ferrofluid confined in a
Hele-Shaw cell with an immiscible nonmagnetic liquid,
the inhibited migration of magnetic particles between
domains should prevent their size variation.

The early stage of bubble formation and migration is
not accessible experimentally. Bubble velocities close to
the sample edges (>1 wm/us) [17] are beyond our ex-
perimentally measurable velocities (=1 um/s). There-
fore, only a qualitative and partial understanding of
bubble penetration can be inferred from the results pre-
sented above. The concentration of bubbles was observed
to increase with & essentially while the diamagnetic band
is present (see Fig. 1). The bubbles should therefore be
formed in the region of the edges and cross the diamag-
netic band to reach the sample interior. The characteristic
sizes of the domains observed on the edges are smaller
than those observed within the bulk. This suggests that
the bubbles have to grow and to come unfastened from the
IS structures present on the edges of the slab. The motion
of the bubbles towards the center of the slab is driven by
the magnetic interaction between the flux-bearing do-
mains and the magnetic field around the slab. However,
the size of the bubbles was found to be independent of the
aspect ratio of the slabs. This indicates that, even if the
magnetic field gradient plays a role in the instability
giving birth to a bubble, its size is essentially controlled
by the competition between the surface tension and the
self-interaction of the screening current. It would be of
great interest to determine to what extent the size of the
domains observed in other diphasic systems results more
from specific mechanisms of the formation of domains
than from the competition between long- and short-range
interactions.

Experimental evidence of the branching instabilities of
circular NS bubbles, as proposed in Ref. [7], was not
found. Branched domains always bear a much larger
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magnetic flux than bubbles. As a result the branching
instabilities of bubbles are unlikely to be the prevalent
mechanism for the formation of fingered structures.
Whether, as in the case of bubbles, this formation results
from an instability of the IS structure located on the edge
of the sample remains to be investigated.
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