
P H Y S I C A L R E V I E W L E T T E R S week ending
9 APRIL 2004VOLUME 92, NUMBER 14
Magnetic-Field Generation in Kolmogorov Turbulence
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We analyze the initial, kinematic stage of magnetic field evolution in an isotropic and homogeneous
turbulent conducting fluid with a rough velocity field, v�l� � l�, �< 1. This regime is relevant to the
problem of magnetic field generation in fluids with small magnetic Prandtl number, i.e., with Ohmic
resistivity much larger than viscosity. We propose that the smaller the roughness exponent �, the larger
the magnetic Reynolds number that is needed to excite magnetic fluctuations. This implies that
numerical or experimental investigations of magnetohydrodynamic turbulence with small Prandtl
numbers need to achieve extremely high resolution in order to describe magnetic phenomena adequately.
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the velocity field is not smooth, i.e., v�l� � l , with�< 1. problem.
Introduction.—In a turbulent highly conducting fluid,
magnetic fields may be amplified since the field lines are
generally stretched by randomly moving fluid elements in
which these lines are frozen [1,2]. Such a mechanism of
turbulent dynamo is consistent with simple analytical
models, is confirmed numerically, and is expected to
work in a variety of astrophysical systems (galaxy clus-
ters, interstellar medium, stars, planets).

Valuable insight into the nature of this process can be
gained from considering the so-called kinematic stage of
the dynamo, when the magnetic field is amplified from an
initially weak ‘‘seed’’ field. As a simple example, con-
sider the case where the resistive scale is smaller than or
of the same order as the viscous scale of the fluid. In a
turbulent velocity field with Kolmogorov spectrum, the
smallest eddies have the highest shearing rate given
by v�l�=l� l�2=3, where l is the size of the eddies, and
v�l� � l1=3 is their turnover velocity. Therefore, at this
stage, the magnetic field grows predominantly on small
scales; see, e.g., [3].

The magnetic energy collapses toward small, resistive
scales during this initial evolution, until the field is strong
enough to affect the dynamics of fluid through the
Lorentz force. The back reaction occurs when the growing
magnetic energy at the resistive scale approaches the
kinetic energy of the smallest-scale eddies [4,5]. Such
behavior is the evidence of small-scale turbulent dynamo;
it is firmly established in numerical experiments, and can
be derived analytically [3,6–12]. Since in this example,
the resistive scale is smaller than the viscous one, the
dynamo is essentially governed by a smooth, viscous-
scale velocity field.

In order to study the growth of magnetic energy on
larger scales we have to understand how the magnetic
field is generated in the inertial interval of the turbulence
(the interval of scales much smaller than the external
scale where the turbulence is excited, and much larger
than the viscous scale where the turbulent energy is dis-
sipated). This problem is nontrivial since in this interval
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This situation is especially relevant for the case of small
magnetic Prandtl number fluids (Pm � �=�, where � is
the viscosity and � is the resistivity), where the magnetic
energy is concentrated mostly in the inertial interval of
the velocity field.

This problem was first addressed by Batchelor [6], who
used the analogy between magnetic field lines and vor-
ticity lines to conclude that when � � �, magnetic energy
is not amplified. This analogy was criticized in [7] on the
grounds that the magnetic field can have arbitrary initial
conditions, while the vorticity field is related to the ve-
locity field by ! � r� v. It was argued further in [13]
that the stretching of magnetic field lines typically domi-
nates over resistive dissipation, thereby making dynamo
action possible for � � �. Direct numerical simulations
of MHD turbulence with Pm � 1 indeed confirm that
weak magnetic fluctuations are generally amplified by
Navier-Stokes velocity fields except for special cases
where the initial magnetic field distribution is close to
that of the vorticity [14,15].

Recently, a number of high-resolution numerical
simulations of MHD turbulence with small magnetic
Prandtl numbers appeared in which magnetic fluctua-
tions were not amplified [16–21], which revived the
interest in the possibility that dynamo action may not
exist for Kolmogorov turbulence with Pm 	 1; see,
e.g., Ref. [20].

This possibility, if correct would contradict the con-
clusions of [13], and possibly be at odds with the astro-
physical observations showing that magnetic fields are
efficiently generated in the convection zones of late-type
stars and in planetary interiors where the magnetic
Prandtl numbers are small (e.g., in the geodynamo, Pm�
10�5–10�6, in the solar photosphere, Pm� 10�7).
Although, to be fair, in the astrophysical cases it is
difficult to estimate the impact of (kinetic) helicity and
inverse cascades on the small-scale dynamo problem. In
any case, the apparent disagreement between theory and
numerical simulations has motivated our interest in the
2004 The American Physical Society 144501-1



P H Y S I C A L R E V I E W L E T T E R S week ending
9 APRIL 2004VOLUME 92, NUMBER 14
In this Letter we argue that dynamo action is always
possible in a rough velocity field, such as the Kolmogorov
field. We find, however, that the magnetic Reynolds
number, Rm � v�L0�L0=�, for dynamo action, and the
associated numerical resolution required to represent
correctly the growing modes strongly depend on the
roughness exponent of the velocity field, �; furthermore,
the rougher the velocity field, the larger the required
resolution. This result explains why dynamo action is
hard to achieve in experiments with small magnetic
Prandtl numbers, while it is easily achieved when the
magnetic Prandtl number is large, Pm 
 1. In the latter
case the velocity field is effectively smooth at the resistive
scales, where the magnetic energy is concentrated.

Our analysis is based on the so-called Kazantsev model
for kinematic dynamo action, which is exactly solvable
and allows velocity roughness exponent � to vary. The
model contains a number of simplifying assumptions;
however, it proves rather effective to reconcile the ana-
lytical and numerical results.

The Kazantsev model for a rough velocity field.—
Consider the induction equation for the magnetic field:

@Bi=@t� vj@Bi=@xj � Bj@vi=@xj � ��Bi; (1)

where Bi�x; t� is the magnetic field, vi�x; t� is the fluid
velocity, � is the (small) Ohmic resistivity, and sum-
mation is assumed over repeated indices. At the initial
stage of evolution, a weak magnetic field is passively
advected by the fluid, and one is justified in introducing
simplifying assumptions about the fluid velocity to make
the problem manageable. Kazantsev [8] and Kraichnan
[22] introduced the model based on the Gaussian, short-
time correlated velocity field, with zero mean and the
covariance

hvi�x; t�vj�x0; t0�i � �ij�x� x0���t� t0�: (2)

This model is a valuable tool for the analytical inves-
tigation of kinematic dynamos; direct numerical simula-
tions reveal that a purely Gaussian velocity field amplifies
small magnetic fluctuations in a similar manner as the
true Navier-Stokes field [14].

Assuming isotropy and homogeneity, the velocity cor-
relation function has the form

�ij�r� � �N�r�
�
�ij �

rirj

r2

�
��L�r�

rirj

r2
; (3)

where r � x� x0. If we further assume that the velocity
field is incompressible, we have �N � �L � �r�0L�=2, and
velocity statistics can be characterized by the single
scalar function, �L�r�.

The model defined by (1)–(3) allows one to write a
closed equation for the correlation function of the mag-
netic field, namely,

hBi�x; t�Bj�x0; t�i � Hij�x� x0; t�; (4)

where, analogously to (3), the Hij function can be repre-
144501-2
sented as

Hij � HN�r; t�
�
�ij �

rirj

r2

�
�HL�r; t�

rirj

r2
; (5)

and, furthermore, the condition r �B � 0 gives HN �
HL � �rH0

L�=2. We characterize the magnetic field corre-
lator by the function HL�r; t�. The equation for this func-
tion can be found by differentiating (4) with respect to
time and by using Eqs. (1)–(3). A rather tedious but
essentially straightforward calculation gives

@tHL � �H00
L �

�
4

r
�� �0

�
H0
L �

�
�00 �

4

r
�0

�
HL; (6)

where we have introduced the ‘‘renormalized’’ velocity
correlation function ��r� � 2�� �L�0� � �L�r�, and
primes denote the derivatives with respect to r. Equa-
tion (6) was originally derived by Kazantsev [8] and can
be rewritten in a related form that formally coincides
with the Shrödinger equation in imaginary time. Effect-
ing the change of the variable, HL �  �r; t�r�2��r��1=2,
one obtains

@t � ��r� 00 � V�r� ; (7)

which describes the wave function of a quantum par-
ticle with variable mass, m�r� � 1=�2��r��, in a one-
dimensional potential (r > 0):

V�r� �
2

r2
��r� �

1

2
�00�r� �

2

r
�0�r� �

��0�r��2

4��r�
: (8)

Equation (7) can be investigated for different choices
of ��r�; however, we restrict ourselves to the inertial
interval of the turbulence, where the velocity correlator
has power-law asymptotics, ��r� / r�. The exponent �
can be found from the scaling of turbulent diffusiv-
ity, D�v�r�r� r1��. Indeed, in the derivation of Eq. (6)
we used the integral D �

R
1
0 h�v�x; t� � v�x0; t�� �

�v�x; t0� � v�x0; t0��id�t � t0� � �L�0� � �L�r� � r�,
which is the turbulent diffusivity [13]. Comparing the
two expressions, we see that � � 1� �.

The Schrödinger equation (7) has the effective poten-
tial Ueff�r� � V�r�=��r� � A���=r2, where A��� �
2� 3�=2� 3�2=4. When A���<�1=4, the quantum
particle falls toward the origin [23], and its wave function
is concentrated at the smallest, resistive scale. This be-
havior is the manifestation of the dynamo mechanism
that was discussed in the introduction. We obtain that
A�1� ��<�1=4 for any roughness exponent of the
velocity field, 0<�< 1, and, therefore, dynamo action
is always possible. The same conclusion was also reached
in [13].

Magnetic field correlator and dynamo growth rates.—
In order to find the wave function (the magnetic field
correlator), boundary conditions must be specified . A
small-scale regularization is naturally given by Ohmic
resistivity. For scales much smaller than the correlation
scale of the velocity field, the � function can be expanded
144501-2
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FIG. 1. The numerically computed resolution parameter, R �
‘c=r�, as a function of the velocity roughness exponent, �.
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as ��r� ’ �L�0��2�� r1���, which corresponds to the
limit of infinitely small Prandtl number. In this expres-
sion and in what follows, we use the dimensionless vari-
ables �, measured in units of the large-scale turbulent
diffusivity, �L�0�, and r, measured in units of the integral
scale, L0.

The boundary condition at the origin follows from
finiteness of magnetic energy, limr!0HL�r; t� �
H0�t�<1. The boundary condition at large scales fol-
lows from the absence of a mean magnetic field,
limr!1HL�r; t� � 0. We will see presently that in the
kinematic regime the magnetic energy is concentrated at
the resistive scale, and the corresponding wave function
decays exponentially fast in the inertial interval, r� r�,
so as to become independent of the large-scale properties
of the velocity field, as expected.

Problem (6) can be cast into the Sturm-Liouville form
by the change of variable HL�r; t� � h�r; t�=r2, indicating
that its solution can be expanded in the eigenfunctions of
the corresponding Sturm-Liouville operator. The maxi-
mum growth rate is then given by the largest eigenvalue
of the operator on the right-hand side of Eqs. (6) or (7),
and the correlation function, HL, corresponds to the
ground-state of this operator.

Following Kazantsev [8], we look for the solution of
(7) in the form  �r; t� � ’�r� exp�!t�. In the inertial
interval, 2�	 r�, the equation for the ’ function reads

�’00 �

�
�3�2 � 6�� 8

4r2
�
!

r�

�
’ � 0; (9)

where ! is dimensionless and is measured in units of
�L�0�=L2

0. The parameter ! must be chosen so as to zero
the ground-state energy of the potential in Eq. (9).

For small !, the potential is dominated by the first term
in the square brackets, and one can easily check that the
corresponding wave function oscillates in the inertial
interval. However, the ground-state wave function cannot
oscillate; therefore, the growth rate, !, must be such that
the second term in the square brackets of (9) dominates
the first one in the inertial interval. At the resistive scale,
r� � �2��1=�, both terms should be of the same order;
therefore, !� ����2�=�.

The wave function corresponding to the growing solu-
tion, ! > 0, decays exponentially fast for r� �1=�, ’ /
exp��2

����
!

p
r�2���=2=�2� ���. This function is concen-

trated at the resistive scale, and its growth rate, !, is of
the order of the eddy turnover time at this scale, in
agreement with our qualitative discussion in the intro-
duction. When one changes the magnetic Prandtl number
(by changing viscosity, for instance), the effective rough-
ness of the velocity field at the resistive scale changes. We
therefore propose that the effect of variations in Prandtl
number can be studied in terms of Eqs. (6) and (9) with
different roughness exponents. By this analogy, the limit
of the smooth velocity field, � � 2, corresponds to large
144501-3
Pm, while the other limit of the Kolmogorov-scaled ve-
locity field, � � 4=3, corresponds to small Pm.

We note that the rougher the velocity field, the broader
the wave function compared to the resistive scale, and,
therefore, the larger the magnetic Reynolds number nec-
essary to generate magnetic fluctuations. To estimate the
critical resolution for the dynamo onset, we solved Eq. (6)
numerically with the large-scale boundary condition,
HL�‘� � 0. For given � and �, we increased the ‘‘system
size,’’ ‘, until HL started to grow, and we thus found the
critical value ‘ � ‘c. An analogous calculation, leading
to the same results, could be done by fixing ‘ and chang-
ing �.

To characterize the inertial range, we introduce the
resolution parameter, R � ‘c=r� � ‘c=�2��

1=�. This pa-
rameter is universal, in the sense that it is independent of
the large- and small-scale properties of the velocity field.
We obtain that when the velocity roughness increases
from � � 2:0 to � � 1:3, the corresponding resolution
parameter increases from R � 3:8 to 29; see Fig. 1. This
means that if we simulated the random Eq. (1) directly,
the required numerical resolution would increase by about
an order of magnitude in each spatial direction as we go
from a smooth velocity to the Kolmogorov-scaled one,
i.e., from large to small Prandtl numbers. Practically, the
resolution must increase even more since the subresistive
scales must be resolved as well.

The behavior in the subresistive scales, r	 �1=�, can
easily be described using Eq. (6). By direct substitution,
one can check that the magnetic field correlator can be
expanded as HL�r; t� � H0�1� r�=�2�� � . . .� exp�!t�,
which implies that the spectrum of the magnetic field
decays as Hk � k2jBkj

2 / k�1�� in the subresistive re-
gion, ��1=� 	 k	 ��1=�. With this spectrum, the rate
of magnetic energy dissipation at the viscous-scale ex-
ceeds that at the resistive scale.

This last result is an artifact of the short-time corre-
lated subresistive eddies, and is not applicable in the
Kolmogorov turbulence where the velocity correlation
144501-3
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and turnover times are comparable, &corr�l� � l=v�l�. At
the subresistive scales, l < l�, this correlation time is
larger than the resistive relaxation time, &� � l2=�, while
in the Kazantsev model it is smaller than &�. However,
model (2) is physically self-consistent. The large mag-
netic energy dissipation is balanced by the large energy
transfer from the subresistive velocity eddies to the sub-
resistive magnetic field. This is possible since the fluid
energy is formally infinite in (2), and this does not affect
the inertial interval. In a situation where the velocity
correlation time is not infinitely small, the asymptotic
tail Hk � k�1�� will hold up to the scales where this
correlation time is comparable to the resistive time, k�
1=

�������������
�&corr

p
. On the smaller scales, the magnetic energy

spectrum is expected to have a steeper decay, see, e.g.,
Refs. [7,24,25].

Conclusions.—We propose that magnetic fluctuations
are always amplified in isotropic and homogeneous three-
dimensional turbulence if the magnetic Reynolds number
is large enough. The required critical magnetic Reynolds
number sharply increases with velocity roughness, which
explains the ‘‘no-dynamo’’ outcomes reported in numeri-
cal simulations with small Prandtl numbers. According
to our analysis there is no physical reason for the absence
of dynamo in numerical simulations other than lack of
resolution. Our results also suggest that obtaining small-
scale dynamo will be a serious challenge for laboratory
experiments, where the magnetic Prandtl number is
small, Pm� 10�5, and the magnetic Reynolds number
is moderate, Rm� 100 [26–29].

As we mentioned in the introduction, the Batchelor
analogy of magnetic field lines and vorticity lines would
hold for � � � if the initial magnetic field were pro-
portional to the vorticity field. In this special case, mag-
netic energy would not be amplified. In the model we
investigate there are infinitely many such special initial
conditions; any function HL�r� lacking the growing ei-
genfunctions in its expansion will not be amplified. This,
of course, does not mean that dynamo does not exist.

We also note that the Schrödinger-type equation of
the form (7) was considered for the magnetic field corre-
lator in the case of a general velocity field in [13]. In this
sense the applicability of the equation may not be re-
stricted to the Gaussian, short-time correlated velocity
field only. For example, we also investigated the modified
Kazantsev model, with a more realistic, finite-time cor-
related velocity field. The velocity correlation time at a
given wave number, k, was chosen to be of the order of the
eddy turnover time at the corresponding scale. This
model could not be solved analytically; however, its
numerical integration gave qualitatively the same results
as (1) and (2). We will report these results elsewhere.
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