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We investigate the dynamics of a realization of Fermi’s relativistic acceleration mechanism that is a
charged test particle oscillating between two reflecting plates that move stochastically. By allowing the
charge to radiate energy during each collision, we find that the main features of the system are (1) due to
the radiation drag the energy gained by the particle is bounded, and (2) the radiated energy represents a
typical realization of an on-off intermittent process, due to numerous continuous encounters with a very
small emission, interrupted by short and intense bursts of radiation. This intermittent radiative process

exhibits non-Gaussian statistical features.
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Aimed at understanding both the very high energy of
cosmic rays and the statistical behavior of their occur-
rence [1], more than half a century ago Fermi [2] pro-
posed a simple model that describes the acceleration of
charged particles to very high energies. The model is
based on the estimation of the probability of the occur-
rence of stochastic encounters of a charged particle with
magnetized interstellar clouds. Fermi’s (stochastic) accel-
eration and some successive variations, including accel-
eration at shocks (see, e.g., Ref. [3]), are now considered
as the classical mechanism capable of explaining how
particles can be accelerated to very high energies [1].

The acceleration of particles is a ubiquitous phenome-
non in the astrophysical realm, where we observe radia-
tion released by moving charges. The emitted radiation
represents therefore the basic diagnostic tool to investi-
gate the physical properties of the environments where
radiation itself has been emitted [4]. As an example
among many others, consider the case of solar flares [5]
where magnetic energy is released within current sheets,
and isolated impulsive events due to particles that are
accelerated within the flaring region are observed [6]. The
statistics of isolated events exhibit power laws for the
total emitted energy and the duration of bursts, as well
as for the waiting times between bursts [7,8].

While standard radiative mechanisms have been ex-
tensively studied, radiation from accelerated or de-
celerated charges within a stochastic, or turbulent,
environment has been less investigated. In this Letter
we analyze a mechanism that is quite relevant in an
astrophysical context, namely, the realization of the sto-
chastic Fermi’s acceleration, which we present in the
framework of a relativistic bouncing ball model. Unlike
the original model of Fermi, where a charged particle can
be accelerated without limits, we consider for the charge
the possibility of a drag of energy due to radiation. We
show that, in this case, the total energy is bounded and the
radiation is emitted as isolated bursts of energy, being the
“complex” realization of an on-off intermittent process
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[9]. This radiative process exhibits non-Gaussian statisti-
cal features.

We consider the bouncing ball model that dates back
from Fermi [10], that is, a charged particle of mass m that
moves between two reflecting plates of mass M >> m. The
plates are separated by a distance € that cannot be zero
and moves independently. If V and u are the velocity of
the plate and the velocity of the charge before a collision,
respectively, the momentum p,, after a collision is related
to the momentum p,, before the collision by the relativ-
istic relationship

V2 \%
Pa = —pbyz(V)(l + e 2;) (1)

where y(V) = (1 — V2/¢?)~1/2, The difference in en-
ergy before and after a collision AE = (2y?E/c?) X
(V2 — alul|V]) (E being the energy of the charge before
the collision) depends on the relative sign o = uV/|ul|V]
between the charge speed and the plates during the col-
lision. In this Letter we suppose that the sign o = *1
occurs stochastically for each event, due to a stochastic
motion V(¢) of the plates. The probability of a collision
with a given o value is proportional to P(o) ~ v €,
where v, ~ |u — V|/{ is the frequency of collision (the
distance ¢ is the mean-free path of the particle). Head-on
collisions (o = —1) increase the energy of the charge
by a fraction AE, while tail-on collisions (o = 1) de-
crease the energy of the charge. It is easily realized that
collisions do not have the same probability [2], rather
Ploc=—1)>P(oc=1).

The average energy exchanged after a sequence of a
large number of collisions, for a given realization of
stochastic signs, is

2
(AE) = 27572")E<v2 ~lllvIZ P

In the limit of high speed [|u| > |V| and y(V) = 1] the
rate of gain of energy dE/dt ~ (AE)/7 (7~ {£/c is the
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time interval between two collisions) results to be pro-
portional to the energy itself dE/dt ~ (4V?/cf)E. The
charge energy increases, therefore, exponentially with
time at a rate 4V2/€c. On the other hand, it is a simple
matter to show that, in the nonrelativistic case, (AE) =
4mV?, so that the total energy of the charge increases
only linearly in time. It is worth noting that, in the work
of Fermi, the distinction between nonrelativistic and
relativistic cases is substantial. In fact, a power law
N(E.) ~ E&Y, for the number of cosmic rays that escape
from the acceleration region with an energy E., (as ac-
tually observed [1]) can be found only in the relativistic
case. In the bouncing ball model, the scaling exponent
x ~ 1+ €c/4V?r, turns out to be proportional to the
inverse of an “‘exit time” 7, of particles from the accel-
eration region.

By introducing a discrete variable n that counts suc-
cessive collisions, the bouncing ball model can be written
as a nonlinear map for the speed of the charge. Indeed,
the momentum p;, of the charge after the nth collision is
calculated from (1) as a function of both the speed u,_;
and the momentum p,_; of the charge after the (n — 1)th
collision. The energy of the charge is given by E; =
(1 + pi2)'/2 and its speed by ui = pi/E:.

Let us consider now the possibility that the charge
radiates energy, and let us see what kind of radiation we
can get during each collision with plates. The rate of
change of radiated energy dQ/dt is proportional to the
square of the charge acceleration (cf., e.g., Ref. [4]). In our
model the charge can radiate energy only during each
quasi-instantaneous collision. In this case [4], the varia-
tion of radiated energy is proportional to the square of the
variation of the charge speed in the collision, that is
AQ ~ —u(Au)?, where u is a free parameter. However,
a comparison with Larmor’s formula [4] suggests that w
should be related to the time scale associated with the
collision. This observation provides a basis for estimating
the value of u in specific applications of the model. The
energy radiated during each collision can be introduced
in the model by recalculating the speed of the charge
after the nth collision as u, = s,|u — w(ul — u,_;)?|
(s, is the sign of u}). Afterwards, we calculate the en-
ergy E, = (1 — u2)~'/? and the momentum p, = u,E,,
and we collect the radiated energy Q, = E;, — E,, as a
function of the sequence of collisions.

We have performed numerical simulations of the ac-
celeration process, each plate moving according to an
uncorrelated random walk V(7). As a reference, we first
report results of simulations obtained without taking into
account any process of energy radiation, that is, u = 0. In
Fig. 1 we show the momentum and the energy E;, as a
function of n, obtained for a given realization of V(z). We
observe some periods where the momentum has very
sharp variations and the charge both gains and loses
energy (due to sharp acceleration and deceleration peri-
ods), thus generating a sequence of bursts. As the number
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FIG. 1. The momentum (upper panel) and the energy (lower
panel), gained by the charge, are reported as a function of
successive collisions n, in the case u = 0, for a given realiza-
tion of V(r).

of collisions increases, the frequency of these bursts in-
creases as well. Then, a net acceleration takes place and
the charge can be accelerated to an energy that, on
average, increases exponentially.

This behavior changes when we take into account the
presence of the radiated energy, that is, u # 0. In this
case the charge does not reach high energies as in the
previous case, but the acceleration process is made by a
sequence of isolated bursts due to rapid changes of the
momentum (see Fig. 2). In fact, we observe periods where
collisions do not yield to a considerable increase of the
charge energy, so that the radiation emitted during these
collisions is undetected. In between these periods, we
observe very sharp variations of the momentum, with
an increase of |p,|. Each single acceleration burst repre-
sents a kind of impulsive phenomenon, and the charge
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FIG. 2. The momentum (upper panel), radiated energy
(middle panel), and energy gained by the charge (lower panel)
are reported as a function of successive collisions rn, in the case
w = 107°, for a given realization of V(7).
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FIG. 3. The function {(p, — po)*)y Vs N for different values
of the parameter u namely, u = 0 (solid squares), u = 107
(open squares), u = 107> (open circles) and u = 10™* (open
triangles). The average has been taken over 10° realizations
of V(z).

energy E, increases, on average, exponentially. However,
when the energy gained by the particle becomes high
enough, the radiated energy becomes significantly differ-
ent from zero, and a burst of radiation starts, thus anni-
hilating the energy gained by the particle. By looking at
the sequence Q, of radiated energy in Fig. 2, we can see it
is made by bursts of very short duration, with a sharp
rising phase and a slow decay. The observed burst behav-
ior in the bouncing ball model is due to the fact that this
model represents a realization of an on-off intermittent
process [9]; in this process, a nonlinear map as y(n) =
2,/ (V1) [where z, comes from a chaotic or random
process, and f(y) is a nonlinear function] gives a se-
quence of isolated bursts due to the presence of an attract-
ing stable subset within the phase space.

The acceleration process can be interpreted as a diffu-
sion in momentum, due to stochastic variations of the
velocity of a great number of particles [11]. Statistical
information is contained in the average, over an increas-
ing number of collisions N, of the squared differences
between the actual momentum and the initial momentum
of particles, say, Sy = N~ >N _ (p, — po)*. In Fig. 3 we
report results obtained for u = 0 compared to results
obtained with three different nonzero values of u, for
10° different realizations of V(¢). At lower N we observe
an increase of Sy, which is independent of the value of w.
This indicates on average an acceleration of the particles,
even when u # 0. At higher N values the function Sy
tends to a saturation when u # 0, thus indicating a stop of
the diffusive process in the momentum space; this stop
yields an upper bound for the energy gained by the
charge. When p = 0 the diffusion of momentum, for
higher N, produces a more than algebraic increase of Sy.

The upper bound for the energy gained by the charge
has some consequence with respect to the classical
Fermi’s problem. We have followed the evolution of 10°
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FIG. 4. The probability P(E,.) of the exit energy E.,, calcu-
lated for 10 particles and for three different values of the
parameter u (reported on the figure). The dashed line refers to
a power law with exponent —0.65.

particles with each having a different exit time 7,. This
means that each particle is free to collide up to a certain
time 7,, obtained from a Poissonian stochastic process,
after which we collect the exit energy E.,. The probabil-
ity distribution of exit energies, shown in Fig. 4, is a
power law, as expected. This is true when u = 0. On
the contrary, when u # 0, particles cannot escape from
the acceleration region with an energy greater than a
given bounded value E,(u) (which depends on w), so
that the probability of obtaining E., > E, is zero, as
shown in Fig. 4.

It is interesting to infer statistics on the bursts of the
radiated energy Q,. In general, the statistical behavior of
isolated bursts, collected as a temporal point process [12],
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FIG. 5. The cumulative distributions for the waiting times
(upper panel), the energy (middle panel), and the duration
(lower panel) are reported for a threshold value Qg = 1073,
Symbols refer to different values of w, namely, u = 1074
(squares), w = 1073 (circles), and u = 107% (triangles).
Distributions have been obtained using 10° realizations of
V(t). Dashed lines refer to power laws with scaling exponents
reported on the figure.
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TABLE I. The values of the scaling exponents for duration
(), energy (B), and waiting times (), obtained for Qy, =
1073, and different values of the parameter u.

=107 =107 uw=10"°
a 0.62 = 0.04 0.62 = 0.03 0.59 = 0.03
B 0.38 £ 0.01 0.35 = 0.01 0.33 = 0.01
y 0.36 = 0.02 0.42 = 0.01 0.42 = 0.01

gives interesting information on the physical mechanism
underlying the existence of bursts itself [8,12]. In order to
select a burst, we use a standard threshold technique [8];
that is, we state that a burst is happening only when Q,
exceed a given threshold Q. In this way we select a
sequence of bursts, and we calculate their total energy £
(as the integral of E,), the duration 7, and the time
between two consecutive bursts A¢ (waiting time).
Then, for different realizations of V(¢), we calculate the
cumulative distribution of the above three quantities,
namely P(E), P(T), and P(Ar). Results for different val-
ues of w are shown in Figs. 5. There exists an intermedi-
ate range where power laws are recovered for all
quantities, that is, P(E) ~ E~#, P(T) ~ T~ %, and P(A?) ~
Ar™7, all of them with scaling exponents lower than 1. As
in the on-off mechanism, power laws are due to correla-
tions between successive bursts of the radiated energy.
Reference values for the scaling exponents are reported in
Table 1. They depend only slightly on the value of the
parameter u, and do not significantly change by changing
the threshold value Q.

In conclusion, we have investigated the rich dynamics
of a relativistic model reproducing Fermi’s stochastic
acceleration. This represents the first, simple version of a
model that can be enriched by considering, for example,
the dynamics in two- or in three-dimensional situations.
In these cases, the dynamics could be a little bit more
complicated, due to the presence of angles of collision,
even if the main results remain unchanged (see, e.g.,
Ref. [13] for a model of the nonrelativistic Fermi’s mecha-
nism in two dimensions). In our one-dimensional case we
have found that, when the charge is allowed to radiate
during collisions with plates, its energy cannot increase
without limits (as in the original Fermi’s mechanism).
Rather, the energy acquired by the particle is bounded
and, interestingly enough, the radiated energy results in
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the realization of an on-off intermittent process; that is,
there are long periods of calm between sporadic bursts of
radiation. The statistical behavior of these bursts seems to
be non-Gaussian, exhibiting power laws for the burst
energy, their duration, and the waiting times between
successive bursts.
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