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Information Entropy in Cosmology
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The effective evolution of an inhomogeneous cosmological model may be described in terms of
spatially averaged variables. We point out that in this context, quite naturally, a measure arises which is
identical to a fluid model of the Kullback-Leibler relative information entropy, expressing the
distinguishability of the local inhomogeneous mass density field from its spatial average on arbitrary
compact domains. We discuss the time evolution of ‘‘effective information’’ and explore some
implications. We conjecture that the information content of the Universe —measured by relative
information entropy of a cosmological model containing dust matter—is increasing.
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interested in how the real matter distribution is different
from its spatial average. For a continuum, the relevant

Riemannian volume integration, restricting attention to
scalar functions ��t; Xi	,
A measure of inhomogeneity in the Universe.—
Cosmology is based on the hypothesis of simplicity called
the cosmological principle, i.e., homogeneity and iso-
tropy. The departure of the actual mass distribution
from the homogeneous Universe model is quantified in
terms of density contrast or a statistical quantity such as
the two-point correlation function, which both have been
studied either by perturbation theory or numerical simu-
lations. Behind these investigations there is a belief that
the Universe is homogeneous on some large enough scale.
This belief has to be quantitatively confronted with ob-
servation, explicitly introducing a measure of inhomoge-
neity for a domain of the Universe.

In this Letter, we propose a measure which quantifies
the distinguishability of the actual mass distribution from
its spatial average, borrowing a well-known concept in
standard information theory. Suppose we are told that the
probability distribution is fqig and would like to examine
how close this distribution is to the actual one fpig by
carrying out observations or coin tossing; the relevant
quantity in information theory is the relative entropy,

S fp k qg �
X
i

pi ln
pi

qi
; (1)

which is positive for qi � pi, and zero if the actual
distribution fpig agrees with the presumed one fqig.
Note that this relative entropy is not symmetric for the
two distributions fpig and fqig. It is known that this
measure always decreases or stays the same under
Markovian stochastic processes (i.e., a linear positive
map). Namely, the actual distribution becomes less and
less distinguishable from the priorly informed distribu-
tion due to the random process. In cosmology we are
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quantity would be

Sf% k h%iDg

VD

�

�
% ln

%
h%iD

�
D
; (2)

where % is the actual distribution and h� � �iD its spatial
average in the volume VD on the compact domain D of
the manifold �. We shall conjecture that the measure
Sf% k h%i�g continues to grow indefinitely, if � is
compact.

The resolution of the apparent discrepancy between the
gravitational system and the ordinary stochastic system
will be (i) we are considering in cosmology a nonisolated
system defined by a comoving region D in contrast to an
isolated system for an ordinary stochastic process, and
(ii) the time evolution dictated by Einstein’s equations
induces a negative feedback due to the attractive nature of
the gravitational force, which tends to make the matter
distribution more and more inhomogeneous.

Deduction of the measure.—To begin with, let us em-
phasize that the functional (2), known as the Kullback-
Leibler relative information entropy (cf. [1–3]) is not
assumed as a measure a priori, rather it can be deduced
from a fundamental kinematical relation that refers to the
noncommutativity of two operations: spatially averaging
and evolving the material mass density field. The specific
form of the information measure is, thus, inherently
determined by the physical problem at hand, and does
not need to be justified empirically or axiomatically as
is the common status of information measures in the
literature.

We define the averaging operation in terms of
2004 The American Physical Society 141302-1
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h��t; Xi	iD :�
1

VD

Z
D

���
g

p
d3X ��t; Xi	; (3)

with the Riemannian volume element d�g :�
���
g

p
d3X,

g :� det�gij	, and the volume of an arbitrary compact
domain, VD�t	 :�

R
D

���
g

p
d3X; Xi are coordinates in a t �

const hypersurface (with 3-metric gij) that are comoving
with fluid elements of dust:

ds2 � �dt2 � gijdX
idXj: (4)

It is evident from the above setting that we predefine a
simple time-orthogonal foliation (which restricts the
matter to an irrotational dust continuum) in order to
simplify the framework in which we discuss our measure
as a concept of a spatial average. We wish to emphasize
that the formalism below could be carried over to more
general settings, e.g., to perfect fluids or scalar fields
(cf. [4]) with possibly further interesting implications.

The above-mentioned ‘‘noncommutativity’’ has been
fruitfully exploited in previous work on the averaging
problem of inhomogeneous cosmologies [5,4,6–8], and
can be compactly written in terms of a commutation rule
for the averaging of a scalar field �:

h�_iiD � h _��iD � h��iD � h�iDh�iD � h���iD
� h���iD � h����iD; (5)

where � denotes the local expansion rate (as minus the
trace of the extrinsic curvature of the hypersurfaces t �
const). We have rewritten the right-hand side (rhs) of
the first equality in terms of the deviations of the local
fields from their spatial averages, �� :� �� h�iD and
�� :� �� h�iD.

The key statement of the commutation rule (5) is that
the operations spatial averaging and time evolution do not
commute. In cosmology, we may think of initial condi-
tions at the epoch of last scattering, when the fluctuations
imprinted on the cosmic microwave background are con-
sidered to be averaged out on a rest frame of a standard
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) cos-
mology. In this picture, the evolution of the Universe is
described by first averaging out (or ignoring) inhomoge-
neities and then evolving the average distribution by a
homogeneous (in the above case homogeneous isotropic)
Universe model. A realistic model would first evolve the
inhomogeneous fields and, at the present epoch, the re-
sulting fields would have to be evaluated by spatial aver-
aging to obtain the final values of, e.g., the averaged
density field. In particular, this comment applies to all
cosmological parameters (see, e.g., [5,7]). Let us illustrate
this statement for the mass density field. Setting � � %,
Eq. (5) reads

h _%iD%iD � h�iDh%iD � h _%%� �%iD: (6)

Since the rhs vanishes due to the continuity equation, we
also have a continuity equation for the averages:
141302-2
h _%iD%iD � h�iDh%iD � 0; (7)

which simply expresses the conservation of the total
material mass, MD �

R
D

���
g

p
d3X%, in our comoving

and synchronous gauge setting.
A fairly general insight that, in principle, will not

depend on some specialized setting can be obtained by
rewriting Eq. (6): The notion of noncommutativity men-
tioned above comes into the fore by observing that the
time evolution of the average density does not coincide
with the average of the locally evolved density:

h _%iD%iD � h _%%iD � h%�iD � h%iDh�iD � h�%��iD: (8)

For the fluctuation terms on the rhs, which would vanish
in the FLRW model without any perturbation, we can
give a deeper interpretation. For this end, let us ask which
functional will reproduce these terms upon performing
the time derivative. First, note that for the averaged ex-
pansion rate h�iD the corresponding functional is the
volume according to

h�iD �
_VVD

VD

�: 3HD: (9)

The latter equality demonstrates that this quantity may be
regarded as an effective Hubble function, which will show
up in our discussion later.

Interestingly, the answer is provided, for % > 0, by the
functional Sf% k h%iDg [Eq. (2)] so that the source of
noncommutativity in Eq. (8) is given (up to the sign) by
the production of relative information entropy, defined as
to measure the deviations from the average mass density
due to the development of inhomogeneities:

h% _iiD � h _%%iD � �
_SSf% k h%iDg

VD

: (10)

This measure can actually be inferred from its definition
in phase space in terms of the one-particle distribution
function for dust matter; i.e., the matter density multi-
plied by a delta-function distribution in velocity space [9].
It is here, where generalizations of the matter model, e.g.,
supported by pressure, vorticity, and/or velocity disper-
sion could be implemented, resulting in more general
entropies after taking velocity moments in phase space.

The reader may ask whether this measure is superior to
the density fluctuation measure, which also provides a
generally growing and positive-definite valuation of the
density distribution. Let us give some answers to this
question before we proceed.

A standard index of inhomogeneity in cosmology is the
density contrast � :� ��%	=h%iD and the derived positive
measure ��%	2 :� h%2iD � h%i2D. The relative informa-
tion entropy or the distinguishability [Eq. (2)] may have
further implications by exploiting results from informa-
tion theory. At the present stage, we do not claim that this
measure is superior to the density fluctuation, but rather it
141302-2
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is complementary. This can be illustrated by pointing out
that both measures are ‘‘cousins’’ in a 1-parameter family
of inhomogeneity measures defined by

F �f% k h%iDg :�
h%iD
�

���
%

h%iD

	
��1

�
D
�1



; (11)

with � being a real parameter. In the limit � ! 0, the
formula reproduces the relative entropy, F �!0 ! S=VD,
whereas � � 1 reproduces the density fluctuation,
F ��1 � ��%	2=h%iD. This interpolating formula is
known as the Tsallis relative entropy. It should be empha-
sized that the limit � ! 0 is singled out as the only
measure that exactly provides the source of noncommu-
tativity with regard to the density evolution.

Properties of the measure.—The measure Sf% k h%iDg
forms one of the central concepts in information theory
[1]; S � 0 (‘‘zero structure’’) is attained by the homoge-
neous mass distribution, % � h%iD.

First, for strictly positive mass density, % > 0, Sf% k
h%iDg is positive definite, which can be readily confirmed,
i.e., it is indeed a measure.

Let us have a closer look at the total time derivative of
our measure. Following from what has been said above,
we may write the total relative information entropy pro-
duction as follows:

_SSf% k h%iDg

VD

� �h�%�iD � �h%��iD � �h�%��iD:

(12)

The last quantity is bounded according to Schwarz’s
inequality, so that we obtain�������

_SSf% k h%iDg

VD

�������� jh�%��iDj � �%��; (13)

with the positive-definite fluctuation amplitudes

�% :�
���������������
h��%	2i

q
; �� :�

���������������
h���	2i

q
: (14)

This inequality states that the temporal change of the
ratio between the distinguishability of the density distri-
bution from the homogeneous distribution and the volume
is bounded by the density and expansion fluctuation am-
plitudes.We may say that the production of information in
the Universe and its volume expansion are competing.

We may look more closely at bounds as well as kine-
matical and dynamical conditions for the total second
time derivative of Sf% k h%iDg. In [9], we give sufficient
conditions for the time convexity of our measure. Let us
put one of them into perspective.We consider the question
under which condition the time derivative of the relative
information entropy production is positive. A straightfor-
ward calculation provides

�SS

VD

� �h�%� _��iD � h%iD���	2: (15)
141302-3
Raychaudhuri’s equation,

_�� � �� 4�G%� 1
3�

2 � 2�2; (16)

with the rate of shear � :�
����������������
1
2�

i
j�

j
i

q
, the shear tensor �ij

being minus the trace-free part of the extrinsic curvature,
together with the commutation rule (5) yields

�SS

VD

� 4�G��%	2 � h%iD���	2 �
1

3
h�%��2iD

� 2h�%��2iD � 4�G��%	2

� �%
�
1

3
��2 � 2��2



�h%iD���	2:

The rhs is positive if

1

2

��13 �
2	 � ��2�2	

��
�

���������������������
4�Gh%iD

p
�

1

tFD

; (17)

where tFD
denotes the effective free-fall time on D.

Equation (17) provides a sufficient condition for the
time convexity of the relative information entropy, which
can be met, if gravity dominates over expansion and shear
fluctuations. Time convexity implies that entropy produc-
tion eventually becomes positive, i.e., the structure even-
tually surfaces and its rate of formation increases.

Discussion and conjecture.—Looking at Eq. (12), we
appreciate that the source, i.e., the averaged relative in-
formation entropy production density, can be positive or
negative. In cosmology, the processes of a relative accu-
mulation of matter (cluster formation) and a relative
dilution of matter (void formation) create structure com-
pared with the average distribution. Following from
Eq. (12), information entropy is produced if, on average,
there are overdense fluid elements (�% > 0) which are
contracting (� < 0), or underdense elements (�% < 0)
which are expanding (� > 0), respectively. With regard
to cosmological structure formation, these two states are
generically encountered in a self-gravitating system, i.e.,
for large enough times and looking at some regional
scale, an asymmetry of states is created due to the cou-
pling of the expansion rate to the rate of change of the
density through the continuity equation. We know from a
calculation of the measure in linear perturbation theory
that the growing-mode solution supports states with
f�% > 0; � < 0g (contracting clusters) and f�% < 0; � >
0g (expanding voids). Thus, for sufficiently large times,
i.e., when the decaying mode disappears, our measure
will increase.

Looking at Eq. (17), we conclude that also in the case
of the second time derivative we have the possibility of
time concavity of the relative information entropy.
However, we have evidence that, at least for large enough
times and on sufficiently large scales, time convexity
always holds for a self-gravitating continuum of dust. In
particular, in the linear perturbation theory, our measure
is always time convex [9].
141302-3
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We can illustrate roughly the physical content of the
sufficient condition (17) as follows. Concentrating on the
linear regime by considering the case in which fluctua-
tions of a quantity are small compared with their average
values, we may expand the quadratic expressions and keep
only the leading terms:

���2	 � 2jh�iDj��; ���2	 � 2jh�iDj��: (18)

In this limit, if we additionally think of a large domain
featuring approximately vanishing average shear, h�iD �
0, the sufficient condition (17) reduces to the inequality

tFD
� tHD

�: jH�1
D j; (19)

i.e., if the effective free-fall time on D is smaller than the
effective Hubble time tHD

, with HD defined in Eq. (9),
then time convexity of our measure is ensured under the
given assumptions. The expectation that both positivity of
the relative information entropy production and time
convexity, which are supported by the linear perturbation
results, will hold in the dust continuum generically, at
least for large enough times and on sufficiently large
scales of averaging, establishes the following.

Conjecture.—The relative information entropy of a
dust matter model Sf% k h%i�g is, for sufficiently large
times, globally (i.e., averaged over the whole compact
manifold �) an increasing function of time.

We are currently investigating nonlinear exact solu-
tions for spherically symmetric domains [9], which may
provide further support for our conjecture.

A note is in order as for the relation to observational
constraints. In our context, a generalized form of
Friedmann’s differential equation governs the averaged
expansion (9), and a set of four effective cosmological
parameters can be defined [5,7]. Assuming that, on suffi-
ciently large scales of averaging, kinematical fluctuations
and the averaged 3-Ricci curvature have negligible con-
tributions, then the sum of the cosmological parameters
for the matter content and the cosmological term have to
add up to 1; the former is indeed given by the fraction of
the two competing times:

�m
D

:�
8�Gh%iD
3H2

D

�
2

3

t2HD

t2FD

: (20)

Referring to observational results, e.g., by the Wilkinson
Microwave Anisotropy Probe [10], its contribution is
�m

D � 0:3 and, thus, tFD
is slightly larger than tHD

.
Note that this does not immediately imply that our mea-
141302-4
sure is not time convex, because the condition (19) derives
from the sufficient condition (17), which provides only a
rough estimation and is not very stringent. On cosmologi-
cal scales, both times are indeed very similar, so that
we should make the estimation tighter to see whether or
not time convexity holds; this we postpone to the future
work [9].

We contemplate that the measure that we propose in the
present Letter not only incorporates an assessment of
structure, but may turn out to be a fundamental quantity
in many other respects, e.g., for the study of black holes
and the early Universe.
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