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We determine the innermost stable circular orbit (ISCO) of binary neutron stars (BNSs) by
performing dynamical simulations in full general relativity. Evolving quasiequilibrium (QE) binaries
that begin at different separations, we bracket the location of the ISCO by distinguishing stable circular
orbits from unstable plunges. We study � � 2 polytropes of varying compactions in both corotational
and irrotational equal-mass binaries. For corotational binaries, we find an ISCO orbital angular
frequency somewhat smaller than that determined by applying turning-point methods to QE initial
data. For the irrotational binaries, the initial data sequences terminate before reaching a turning point,
but we find that the ISCO frequency is reached prior to the termination point. Our findings suggest that
the ISCO frequency varies with compaction but does not depend strongly on the stellar spin.
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curve of the binding energy vs separation for quasiequi-
librium (QE) models along a sequence of constant rest

We adopt a � � 2 polytropic equation of state (EOS)
for which the maximum rest mass (gravitational mass) of
The emission of gravitational radiation drives the slow
inspiral of neutron star and black hole binaries towards
their coalescence and merger. Fully general-relativistic
numerical simulations are required for the accurate
description of the late inspiral and plunge epochs of
the binary evolution (see, e.g., [1] for a recent review).
While complete orbits of binary black holes have
not been numerically simulated yet, simulations of binary
neutron star (BNS) mergers are now becoming suffi-
ciently mature to provide results of astrophysical interest
(e.g., [2]).

One piece of information of great astrophysical interest
is the location of the innermost stable circular orbit
(ISCO). The evolution of a binary system occurs in three
distinct phases [3]: (1) a slow, adiabatic inspiral phase that
is driven by gravitational radiation reaction forces and
can be approximated as a sequence of quasicircular orbits;
(2) a brief transition phase, where the inward radial
motion increases and the orbital motion changes from
slow inspiral to rapid plunge; (3) a plunge phase, termi-
nating in the merger of the objects. The ISCO resides
within the transition region; its identification is compli-
cated by the fact that it is not arbitrarily sharp and cannot
be localized precisely. The gravitational wave quasiperi-
odic ‘‘chirp’’ signal of the slow binary inspiral ends at
about the twice the orbital angular frequency of the
ISCO, where it changes its form to a wave signal charac-
teristic of a burst (compare [4]).

Within the framework of Newtonian and post-
Newtonian gravity, the ISCO has been determined by
different methods (see, e.g., the reviews [5,6] and refer-
ences therein). Much less is known for fully relativistic
binaries. For corotational binaries, a turning point on a
0031-9007=04=92(14)=141101(4)$22.50 
mass marks the onset of secular instability [7,8]. In the
following, we will refer to this point as the QE-ISCO. No
such theorem exists for irrotational binaries or for the
onset of dynamical instability [9]. Locating the ISCO
dynamical instability therefore requires dynamical evo-
lution simulations of the full set of Einstein’s equations
for the gravitational field, coupled to relativistic hydro-
dynamics in the case of BNSs.

In this Letter, we present the first attempt to dynami-
cally locate this ISCO. We identify BNS configurations
that correspond to stable and unstable circular orbits
by evolving binary initial data sets for different separa-
tions. The objective is to bracket the location of the ISCO
by distinguishing configurations that can maintain
quasicircular motion for more than one orbital period
and systems that plunge and coalesce in a fraction of
that time.

We adopt the QE initial data presented by Marronetti
and Shapiro [10], describing two identical neutron stars in
quasicircular orbit. These data have been constructed
using the conformal thin-sandwich (CTS) decomposition
of the constraint equations, together with maximal slic-
ing and spatial conformal flatness. The formalism intro-
duced in [10] allows for a free specification of the spin of
the stars in an approximate fashion. In this Letter, we
consider corotational binaries as well as ‘‘irrotational’’
binaries [11] with zero (equatorial) fluid circulation,
which are believed to be more realistic astrophysically
[12]. Sequences of corotating binaries feature a minimum
in the binding energy at the QE-ISCO. Irrotational bi-
naries, however, typically terminate before reaching this
minimum (see Figs. 7 and 8 in [10]; also [13,14] as well as
[1] for more references).
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FIG. 1. Coordinate separation vs time for sequences A. The
separation d is the coordinate distance between points of
maximum rest mass density and is given in units of the total
rest mass of the binary M0. The curves show runs with differ-
ent grid sizes and resolutions which are detailed in Table I. The
filled circles mark the time of surface contact for the merger
orbits. The empty square on the y axis marks the QE estimation
of the ISCO separation.
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FIG. 2. Coordinate separation vs time for sequences B.
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FIG. 3. Coordinate separation vs time for sequences C.
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a star in isolation in nondimensional units [15] is m0 �
0:180 (m � 0:164) with a compaction ratio of �m=R�1 �
0:216 . We study models that have two different compac-
tion ratios in isolation: a moderate value �m=R�1 � 0:142
(both corotational and irrotational binaries; cases A
and B) and a high value �m=R�1 � 0:195 (only irrota-
tional binaries; case C). These compaction ratios corre-
spond to individual stars with rest masses m0 � 0:1469
and m0 � 0:1767, respectively. The fully general relativ-
istic hydrodynamical code employed for this study has
been introduced in Duez et al. [16].We evolve the gravita-
tional fields using the Baumgarte-Shapiro-Shibata-
Nakamura formalism [17] with a Courant factor of 0.46.
We approximate maximal slicing with a ‘‘K driver’’ and
use a ‘‘Gamma-driver’’ shift condition that keeps ���i �
���lm ���i

lm approximately constant. The simulations were
performed on uniform Cartesian grids in a reference
frame that rotates with the binary, which improves con-
servation of angular momentum [16,18] and reduces the
spurious eccentricities of the stable orbits. In all cases
presented here, the spatial volume covered by the grids is
completely enclosed by the light cylinder (defined by
coordinate radius RL � 1=�orb). A more detailed de-
scription of the evolution of the gravitational and
hydrodynamical fields, the boundary conditions, and
their numerical implementation can be found in Duez
et al. [16].

Figures 1–3 show the evolution of the coordinate sepa-
ration d between maximum baryonic density points in
each star for cases A, B, and C [19]. The filled circles
mark the points of surface contact for those runs that
result in a merger. In each plot, we present results for
different grid resolutions and bounding box sizes, which
are listed in Table I. We use the highest quality results to
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bracket the ISCO; these are labeled as Stable and Merger
in the plots. Results obtained on smaller computational
grids agree with these brackets fairly well. Note that all
three merger cases experience surface contact (and the
related mass interchange) well after the start of the
inspiral plunge. The ISCO parameters for each of the
three cases are estimated as the average of the parameters
corresponding to the bracketing orbits labeled Stable and
Merger on each figure, while the ‘‘errors’’ span the differ-
ence. We note that these ‘‘errors’’ are partly due to nu-
merical errors (see below), and partly by the conceptional
difficulty of defining a sharp ‘‘ISCO.’’ The results are
included in Table II. For the corotating sequence A, we
also compare with the QE-ISCO at the QE turning point.
The irrotational sequences considered in this paper ter-
minate before reaching a turning point (compare [13,14]).
The termination of a sequence indicates that equilibrium
models do not exist at smaller separations, but since the
numerical determination of this point relies on the break-
down of a numerical (equilibrium) code, its accuracy is
somewhat uncertain. For both sequences, we find that the
ISCO is reached before the sequence terminates. For
the irrotational sequence C, one can also compare with
the first-order post-Newtonian ellipsoidal results of
141101-2
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FIG. 4. Quality control for the �m=R�1 � 0:142 irrotational
runs. We show from top to bottom the total gravitational mass,
angular momentum, the Hamiltonian constraint, and the aver-
age of the components of the momentum constraint vs time
[22]. The curves correspond to the runs from Fig. 2 labeled as
Stable (solid lines) and Merger (dashed lines). The filled circle
marks the time of surface contact for the merger orbit.

TABLE I. Grid sizes and resolutions. The resolution (Res.) is
given in number of grid points across the stellar diameter. The
bounding box length B gives the extent of the physical space
covered in each direction in units of total rest mass M0 (i.e., the
numerical grid spans from��B; 0:0; 0:0� to �B;B; B� since we
make use of the equatorial and � symmetries of the systems).

Case Figure Curves Res. B=M0 Grid points Res. Box

A 1 Dashed 20 18.7 642 	 128 Low Large
A 1 Solid 40 18.7 1282 	 256 High Large
B 2 Dashed 20 18.7 642 	 128 Low Large
B 2 Solid 40 18.7 1282 	 256 High Large
C 3 Dotted 30 15.2 1282 	 256 Low Large
C 3 Dashed 40 11.5 1282 	 256 High Small
C 3 Solid 40 15.5 1722 	 344 High Large
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Lombardi et al. [20], who find an angular velocity of
�m0 � 0:0226 for �m=R�1 � 0:2 binaries.

We consistently find that orbits become unstable before
the onset of instability as determined by QE methods,
meaning at a smaller orbital frequency. This is not sur-
prising, since the orbital decay becomes fairly rapid just
outside the QE-ISCO (compare, e.g., Fig. 2 in [4]), so that
our criterion for merger orbits applies to those binaries.
This result is also consistent with earlier suggestions that
the transition through the ISCO may be fairly gradual [3].
The similarity between the corotating and irrotational
values for the �m=R�1 � 0:142 orbits suggests that the
dependence of the ISCO parameters on the stellar spins is
not strong.

During all simulations, we monitored the Hamiltonian
and momentum constraints as well as the conservation of
the total Arnowitt-Deser-Misner (ADM) mass M and
angular momentum J [21] (the rest mass M0 is conserved
identically in our evolution scheme). An example of these
for case B is shown in Fig. 4. In all our simulations, all
quantities are conserved very well up to merger, after
which hydrodynamical effects including shocks and
shear are handled only crudely by our artificial viscosity
scheme. Stable runs ultimately break down due to accu-
mulation of numerical error. We find that the latter is
sometimes dominated by hydrodynamical effects, lead-
ing to deviations in the angular momentum, and some-
times by gravitational effects, leading to violations of the
constraint equations. These effects are improved by in-
creasing the grid resolution and the separation to the outer
boundaries, as well as using a coordinate system that
rotates with the binary as closely as possible.

We present prototype simulations to determine dy-
namically the ISCO of BNSs. Evolving QE initial data
at different separations, we bracket the ISCO by distin-
guishing stable orbits, which remain in approximately
circular orbit for well over a period, from unstable
ones, which decay within a period. The uncertainty in
our results is caused both by numerical error and
the conceptual difficulty in defining a sharp ISCO.
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Consistent with earlier results [3,4], we find that binary
orbits start to plunge somewhat outside of the ‘‘QE-
ISCO’’ as determined by turning-point methods applied
to QE initial data, resulting in a cutoff in gravitational
‘‘chirp’’ signals at somewhat smaller frequency. Our
preliminary results also seem to indicate that the depen-
dence of the ISCO parameters on the stellar spins is not
very strong.

One source of error is our assumption of zero radial
velocity in our binary initial data. More realistic initial
data at finite binary separation would incorporate a radial
velocity that corresponds to the nonzero rate of inspiral at
that separation. Miller [23] indicates that this approxima-
tion may lead to non-negligible error, especially for black
hole binaries. However, for the neutron star binaries and
separations we consider here, the radial velocities would
be at most 1%–3% of the tangential velocity [4,23].
Consequently, the error introduced by neglecting this
component is likely to be smaller than the error bars
already provided in Table II.

It was recently pointed out that, in dynamical evolu-
tions of CTS initial data describing corotating BNSs, the
four-velocity u� quickly deviates from being proportional
to an exact helicoidal Killing vector, as assumed in con-
structing the initial models [24]. We confirm this result
but find that this deviation arises from a small readjust-
ment of the gravitational fields [25], and not from appre-
ciable changes in the density and velocity profiles.We find
no evidence of a significant breakdown of quasiequili-
brium for stable orbits, and any spurious orbital eccen-
tricities sharply decrease with increasing grid size.

It is a pleasure to thank Hwei-Jang Yo for useful dis-
cussions. Most of the calculations were performed at the
National Center for Supercomputing Applications at the
University of Illinois at Urbana-Champaign (UIUC). This
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TABLE II. Summary of our binary cases A, B, and C and results for their ISCO. For each sequence, we show the rotation state,
the rest mass of the individual stars m0, the compaction in isolation �m=R�1, the total initial ADM mass Mi and angular momentum
Ji=M

2
i , as well as the binary coordinate separation at the ISCO d=M0 (where M0 is the total rest mass 2m0) and the corresponding

orbital angular velocity �m0. For the corotational sequence, we also compare with the QE result for �m0 [10]. The wave frequency
at the ISCO is fGW and m1:4 is the stellar gravitational mass in units of 1:4M
.

Case Rotation m0 �m=R�1 Mi Ji=M
2
i d=M0 �m0 �m0 (QE) fGWm1:4 (kHz)

A Corotating 0.1469 0.142 0:2708� 0:0001 1:08� 0:01 9:0� 0:8 0:0162� 0:0021 0.0179 0.697
B Irrotational 0.1469 0.142 0:2702� 0:0003 0:97� 0:04 9:4� 0:9 0:0154� 0:0022 � � � 0.662
C Irrotational 0.1767 0.195 0:3171� 0:0009 0:93� 0:04 7:7� 0:8 0:0199� 0:0029 � � � 0.838
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