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Time series are characterized by complex memory and/or distribution patterns. In this Letter we
show that stochastic models characterized by different statistics may equally well reproduce some
pattern of a time series. In particular, we discuss the difference between Lévy-walk and fractal
Gaussian intermittent signals and show that the adoption of complementary scaling analysis techniques
may be useful to distinguish the two cases. Finally, we apply this methodology to the earthquake
occurrences in California and suggest the possibility that earthquake occurrences are described by a
colored (‘‘long-range correlated’’) generalized Poisson model.
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Recently, Scafetta et al. [1] introduced a complemen-
tary scaling analysis, the DEA, that focuses on the scal-

h�i�i�ti / t , and by a finite variance waiting time
distribution  ��� whose form may be, for example, that
Herein we introduce a method of multiscaling com-
parative analysis (MSCA) for the study of intermittent
signals. We show that to distinguish between fractal
Gaussian intermittent noise and Lévy-walk intermittent
noise the scaling results obtained using diffusion entropy
analysis (DEA) should be compared with those obtained
from both finite variance scaling methods (FVSM) and
probability distribution functions (PDFs) [1,2]. Finally,
we apply MSCA to the seismic data of California and
suggest that, instead of being described by a statistics
according to which the waiting times between Omori’s
earthquake clusters are uncorrelated from one another, as
the traditional generalized Poisson model [3,4] or a recent
Lévy-walk-like model assume [4], the data may also be
characterized by fractal Gaussian intercluster 1=f long-
range correlations that may disclose the earthquake con-
versations recently suggested by Stein [3].

Hurst et al., in their pioneering work [5], introduced
the notion of rescaled range analysis of a time series that
takes the scaling form of �R=S��t� / tH (H is now called
the Hurst exponent). This stimulated Mandelbrot to in-
troduce the concept of fractional Brownian motion
(FBM) [6]. In a random walk context the value H � 0:5
indicates uncorrelated noise, 0<H < 0:5 indicates anti-
persistent noise, and 0:5<H < 1 indicates persistent or
long-range correlated noise [6]. Alternative scaling meth-
ods applied to a time series f	ig, where i � 1; 2; . . . , focus
on the autocorrelation function C�t� / h	i	i�ti / t2H
2

on the power spectrum representation PS�f� / f1
2H [7]
and on the evaluation of the variance of the diffusion
generated by f	ig [8] (V�t� / t2H). All such scaling meth-
ods are related to the original Hurst’s analysis and yield
his H exponent for sufficiently long time series. These
techniques, referred to by us as FVSM, assume a finite
variance and according to the central limit theorem [9]
the underlying statistics are Gaussian.
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ing exponent � evaluated through the Shannon entropy
S�t� of the diffusion generated by the fluctuations f	ig of a
time series [1,2]. Here, the PDF of the diffusion process,
p�x; t�, is evaluated by means of the subtrajectories
xn�t� �

P
t
i�0 	i�n with n � 0; 1; . . . . The PDF scaling

property for an anomalous diffusion takes the form
p�x; t� � t
�F�xt
��, and its entropy increases in time
as S�t� � 


R
1

1 p�x; t� ln�p�x; t�dx � A� � ln�t�, where

A is a constant. One can also examine the scaling proper-
ties of the second moment for the same process using the
FVSM. One version of FVSM is the standard deviation
analysis (SDA) [2] which is based on the evaluation of the
standard deviation D�t� of the same variable x and PDF
p�x; t�, and yields D�t� �

������������������������������
hx2; ti 
 hx; ti2

p
/ tH [2,6].

Note that the entropy S�t� does not require the variance
of the PDF p�x; t� to be finite [2]. The existence of scaling
for a process with a diverging second moment implies that
DEA is complementary to and not simply an alternative
to FVSM. So, the scaling exponent � is conceptually
different from the Hurst exponent H measured by means
of the FVSM. This suggests that the scaling exponents �
and H may fulfill multiple relations according to the
process under study and, therefore, the combined use of
DEA, SDA, and PDF analysis may increase our under-
standing of complex phenomena through a MSCA.

Herein we focus on the statistics of intermittent noises.
The simplest way to represent intermittent noise f	ig is
through a dichotomous representation in which the value
	 � 1 indicates the occurrence of an event and the value
	 � 0 represents no event [10–13]. An intermittent noise
is characterized by the correlation properties of the wait-
ing time sequence f�jg between consecutive events and by
its waiting time distribution  ���. There are two basic
distinct forms of intermittent noises as follows:

(i) Fractal Gaussian intermittent noise is characterized
by a long-range correlated waiting time sequence,

2H
2
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of a Gaussian, exponential, or Poisson distribution. The
diffusion generated by a fractal Gaussian intermittent
noise is a particular type of FBM and satisfies the asymp-
totic scaling relation between indices

� � H: (1)

We refer to (1) as the fractal Gaussian diffusion relation.
If the long-range correlations of f�ig are destroyed via
shuffling, the new intermittent sequence is characterized
by the value H � � � 0:5 of random time series.
Figure 1(a) shows the scaling properties of a computer
generated fractal Gaussian intermittent noise with an
exponential waiting time distribution and H � � � 0:75.

(ii) Lévy-walk intermittent noise is characterized by an
uncorrelated waiting time sequence, h�i�ji / �ij, and a
Lévy or an inverse power law waiting time distribution
 ��� / �T � ��
�, with 2<�< 3 that ensures that
although the first moment of � is finite, the second mo-
ment diverges. The presence of a Lévy-walk process in a
given time series can be detected [2,10] by means of the
following asymptotic relation among the three exponents:

0:5< � � �3
 2H�
1 � ��
 1�
1 < 1: (2)

We refer to (2) as the Lévy-walk diffusion relation.
Interesting applications of this type of noise, introduced
in Ref. [14], have been found in several Lévy phenomena
including the distribution of solar flares [10–13]. In the
particular case in which the sequence f�ig is correlated the
scaling exponents � and H are larger than the values
predicted by Eq. (2). Figure 1(b) shows the scaling proper-
ties of a computer generated random Lévy-walk intermit-
tent noise with � � 2:5 that has H � 0:75 and � � 0:67.

We stress that the Lévy-walk relation (2) is fulfilled if
the waiting times f�ig are uncorrelated, in which case any
shuffling of f�ig would not alter the scaling exponents H
and �. In fact, the superdiffusion scaling exponents 0:5<
�<H < 1 of a Lévy-walk intermittent noise are related
to the fatness of the waiting time inverse power law tail,
as measured by the exponent �. Contrary to a fractal
Gaussian intermittent noise, this Lévy scaling does not
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FIG. 1. DEA end SDA of (a) a fractal Gaussian intermittent
noise with  ��� / exp�
�=�� with � � 25 and H � � � 0:75;
the fractal Gaussian relation (1) of equal exponents is fulfilled.
(b) A Lévy-walk intermittent noise with  ��� / �
� and � �
2:5; note the bifurcation between H � 0:75 and � � 0:67
caused by the Lévy-walk relation (2).
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imply a temporal correlation, or a historical memory,
among events because the occurrence of future events is
independent of the frequency of past events.

We also observe that there exist particular intermittent
sequences obtained by mixing Lévy and Gaussian noises
[12], with a Lévy memory beyond memory [15] or by
substituting an event with a cluster of events [4]. In these
cases the asymptotic properties of the scaling exponent H
and � are expected to depend on the component, Gaussian
or Lévy, with the strongest persistence.

The relations (1) and (2), and the correlation or shuf-
fling effects indicate that the DEA should be jointly used
with the FVSM and/or PDFs. The adoption of a single
technique can lead to a misinterpretation of the charac-
teristics of a phenomenon, because Lévy-walk intermit-
tent noise can be confused with fractal Gaussian
intermittent noise, and uncorrelated noise of one kind of
statistics can be mistaken for correlated noise with an-
other kind of statistics. Figures 1(a) and 1(b) clearly show
that the determination of only one of the two exponentsH
and � is not sufficient to conclude whether a phenomenon
is characterized by a Lévy-walk intermittent statistics or
by a fractal Gaussian intermittent statistics. So, we sug-
gest a MSCA by combining complementary techniques.

Recently, DEA has been applied by Mega et al. [4] to
study the time distribution of earthquakes in Southern
California (20�–45� N latitude and 100�–125� W longi-
tude) from 1976 to 2002. The catalog [16] is complete for
local events with magnitude M � 3 since 1932, for M �
1:8 since 1981, and for M � 0 since 1984. The time
intervals between large earthquakes were studied in
Ref. [4] by setting a temporal variable 	�t� � 1 at the
occurrence of an earthquake with a magnitude larger
than a given threshold Mt, and by setting 	�t� � 0 when
no earthquake of the specified magnitude occurs.We refer
to f�ig as the waiting time sequence between consecutive
earthquakes with M � Mt. So, the intermittent sequence
	�t� was analyzed by means of the DEA and the measured
scaling exponent was � � 0:94� 0:01. The authors of
Ref. [4] concluded that the time intervals, ��m, between
two consecutive Omori earthquake clusters [17] is mod-
eled by an inverse power law  ���m� / ���m�
� with an
exponent � � 2:06 calculated via Eq. (2). This calcula-
tion was based on the traditional assumption [4] that the
waiting times between such clusters are uncorrelated

(h��mi ��mj i � �ij, implying that the observed superdiffu-
sion is induced by a Lévy walk between the Omori
clusters. Finally, Mega et al. [4] showed that a synthetic
sequence produced with Omori’s uncorrelated clusters,

h��mi ��mj i � �ij, temporally distributed according to an

inverse power law  ���m� / ���m�
� with� � 2:06, gen-
erates a superdiffusive process with � � 0:94.

However, the authors of Ref. [4] did not make the
important distinction between Lévy-walk and fractal
Gaussian intermittent noises such as we did above. We
138501-2
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FIG. 2. PDF of the waiting times �i of earthquakes with a
magnitude M � Mt � 1, 2, 3, and 4. The initial P��� / 1=� is
Omori’s law [17].
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FIG. 3. DEA and SDA of the intermittent time signal 	�t� for
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tation of H if the Levy-walk condition (2) holds true.
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to the case in which the intercluster waiting time sequence
f��mg is randomized such that h��mi ��mj i / �ij.
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showed that a scaling exponent in the range 0:5< �< 1
can be associated with either a correlated fractal Gaussian
intermittent noise or with an uncorrelated Lévy-walk
noise. Consequently, we apply a MSCA to determine
which of the two statistics better describes the data.

Figure 2 shows the waiting time PDFs between earth-
quakes using four magnitude thresholdsMt � 1, 2, 3, and
4. The PDFs show an initial Omori law [17] [P��� / 1=�],
but the PDF tails present a large inverse power law
exponent � > 4 and may even approach an exponential
(or Poisson) distribution asymptotically. An Omori clus-
ter is determined by correlated aftershocks [17] and lasts
for a time that increases with the magnitude threshold. If
the waiting time distribution between Omori’s clusters
were an inverse power law with � � 2:06 it might be
expected that by increasing the magnitude threshold,
most of the aftershocks could be cut off and the tail of
the distribution could converge to an inverse power law
with � � 2:06. This does not seem to happen. Therefore,
such a � � 2:06 inverse power law, if it is real, cannot be
observed in this way.

Figure 3 compares the DEA and SDA applied to the
intermittent sequence 	�t� of earthquakes with M � 1.
Different magnitude thresholds give similar results. If
these data corresponded to a random intermittent Lévy
walk and if the curves shown in the figure corresponded
to the asymptotic regime, the condition (2) interrelating
the exponents should hold. A rigorous DEA fit in the
range �27:215 gives � � 0:944� 0:008 implying a Lévy
walk H � 0:97� 0:005. Instead, the same-range SDA fit
gives H � 0:943� 0:004: The error analysis seems to
confirm better the Gaussian relation of equal scaling
exponents (1) because � and H overlap within the statis-
tical error as in Fig. 1(a), while the difference between the
measured H and the Lévy walk H is statistically signifi-
cant (p < 0:01). By shuffling the earthquake waiting time
intervals f�ig we get H � 0:5. Finally, by directly apply-
138501-3
ing DEA and SDA to the waiting time series f�ig, we
again get � � H � 0:94. These findings suggest that the
data do not fulfill the Lévy-walk relation (2) and that it
might be more likely that the Californian earthquakes are
long-range temporal correlated according to the persis-
tence of a fractal Gaussian intermittent noise with H � 1
known as 1=f or pink noise [7].

The curve with circles in Fig. 4 shows the DEA applied
to a synthetic earthquake catalog obtained by coloring a
kind of generalized Poisson model for earthquakes. First
we generated several Omori clusters exactly as done in
Ref. [4], that is, by assuming that the number of earth-
quakes in a cluster follows an inverse power law distri-
bution with an exponent equal to 2.5 and that the events
within the same cluster are temporally distributed
138501-3
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according to Omori’s law, that is, an inverse power law
with exponent equal to p � 1. We generated a total num-
ber of events equal to the total number of earthquakes in
the catalog with a magnitude thresholdMt � 1. However,
contrary to what was done in Ref. [4], we do not randomly
(h��mi ��mj i / �ij) position these clusters according to an
inverse power law intercluster waiting time distribution
 ���m� / 1=�� with � � 2:06. Instead, we distribute the
clusters according to a 1=f fractal Gaussian intermittent
noise f��mj g, that is, with h��mi ��mi�ti / t

2H
2 and H � 1.
The intercluster waiting time distribution  ���m� /
exp�
��m=�� shown in the inset of Fig. 4 could be sub-
stituted with any other distribution with finite variance.
Figure 4 shows that the model is able to reproduce the
same superdiffusion pattern shown by the data. Finally,
the curve with triangles shows the reduction of long-
range persistency of a synthetic catalog obtained with
the same clusters of above but temporally distributed
after having shuffled, to randomize, the same intercluster
waiting time sequence f��mj g.

However, Eqs. (1) and (2) are fulfilled only asymptoti-
cally where the central limit theorem for Gaussian pro-
cesses or its generalization for Lévy processes apply [9].
There might be the possibility that Fig. 3 as well as Fig. 2
in Ref. [4] do not show the asymptotic limit but a tran-
sition regime that is strongly superdiffusive (� � 1) be-
cause of the Omori intracluster correlations. A long
transition regime is also evident in the curve with tri-
angles shown in Fig. 4 that refers to an uncorrelated
intercluster waiting time sequence and should asymptoti-
cally converge to � � 0:5. In fact, also a generalized
Poisson model or an ETAS [18] model with appropiate
parameters may generate a synthetic catalog showing
superdiffusive properties similar to the real data within
a time range [19]. However, we observe that such a result
may depend too strongly on the particular parameters
used in the models.

In conclusion, we have discussed some of the difficul-
ties that can be encountered in interpreting intermittent
sequences and shown that models with alternative statis-
tics can reproduce some pattern of a time series equally
well. This fact suggests the need of an analysis involving
complementary tests. In particular, we showed how to
distinguish fractal Gaussian intermittent noise from
Lévy-walk intermittent noise using MSCA. This meth-
odology has an important application in the analysis of
phenomena having intermittent signals because different
statistics imply different dynamics. Our analysis supports
the idea that earthquakes generate strain diffusion, whose
propagation over hundreds of kilometers induces remote
seismic activity [3,20]. This propagation according to our
statistical analysis produces correlations in the time in-
tervals between earthquake clusters. In fact, the thesis
that earthquakes are assembled into uncorrelated Omori
clusters, h��mi ��mj i � �ij, as both the standard generalized
138501-4
Poisson model [4] and the Lévy-walk model [4] require,
seems unrealistic. We suggest that it is more plausible that
earthquake clusters are 1=f long-range correlated and,
perhaps, they are subclusters of a larger Omori cluster. In
fact, a 1=f noise can be generated by the superposition of
relaxation processes within a wide range of energies [7]
that may well describe the coexistent stress alterations
caused by old and recent, as well as large and small
shocks. Thus, the 1=f long-range intercluster correlations
may imply that earthquake occurrences may strongly
depend on the geological history of a vast region.
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