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Tailoring Josephson Coupling through Superconductivity-Induced Nonequilibrium
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The distinctive quasiparticle distribution existing under nonequilibrium in a superconductor-
insulator-normal metal-insulator-superconductor mesoscopic line is proposed as a novel tool to control
the supercurrent intensity in a long Josephson weak link. We present a description of this system in the
framework of the diffusive-limit quasiclassical Green-function theory and take into account the effects
of inelastic scattering with arbitrary strength. Supercurrent enhancement and suppression, including a
marked transition to a � junction, are striking features leading to a fully tunable structure.
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FIG. 1 (color). Scheme of the Josephson transistor. The super-
current IJ (along the white dashed line) is tuned by applying a
bias VC across the SINIS symmetric line connected to the
junction of cross section AJ. The superconducting termi-
nals belonging to the SNS junction, labeled SJ (3 and 4),

center of the weak link. All normal wires are assumed quasi-
one-dimensional.
Nonequilibrium effects in mesoscopic supercon-
ducting circuits have been receiving rekindled attention
during the last few years [1]. The art of controlling
Josephson coupling in superconductor-normal metal-
superconductor (SNS) weak links is at present in the
spotlight: a recent breakthrough in mesoscopic super-
conductivity is indeed represented by the SNS transistor,
where supercurrent suppression as well as its sign reversal
(� transition) were demonstrated [2,3]. This was achieved
by driving the quasiparticle distribution in the weak link
far from equilibrium [4–6] through external voltage
terminals, viz., normal reservoirs. Such behavior relies
on the two-step shape of the quasiparticle nonequilibrium
distribution, typical of diffusive mesoscopic wires and
experimentally observed by Pothier and coworkers [7].

The purpose of this Letter is to demonstrate that it is
possible to tailor the quasiparticle distribution through
superconductivity-induced nonequilibrium in order to
implement a unique class of superconducting transistors.
This can be achieved when mesoscopic control lines are
connected to superconducting reservoirs through tunnel
barriers (I), realizing a superconductor-insulator-normal
metal-insulator-superconductor (SINIS) channel. The pe-
culiar quasiparticle distribution in the N region, originat-
ing from biasing the S terminals, allows one to access
several regimes, from supercurrent enhancement with
respect to equilibrium to a large amplitude of the �
transition passing through a steep supercurrent suppres-
sion. These features are accompanied by a large current
gain (up to some 105 in the region of larger input imped-
ance) and reduced dissipation. The ultimate operating
frequencies available open the way to the exploitation of
this scheme for the implementation of ultrafast current
amplifiers.

The investigated mesoscopic structure (see Fig. 1) con-
sists of a long diffusive weak link of length LJ much
larger than the superconducting coherence length (�0)
oriented along the x direction. This defines the SNS
0031-9007=04=92(13)=137001(4)$22.50 
are kept at zero potential. The SINIS control line is
oriented along the y direction and consists of a normal
wire, of length LC and cross section AC, connected
through identical tunnel junctions of resistance RT to
two superconducting reservoirs SC (1 and 2), biased at
opposite voltages �VC=2. The superconducting gaps of SJ
and SC (�J and �C) are in general different.

The supercurrent IJ flowing across the SNS junction is
given by [5,6]

IJ�VC� �
�AJ
eLJ

Z 1

0
dE �f��E;VC��f�E;VC��Im�jE�; (1)

and depends on the quasiparticle distribution function
f�E�. In Eq. (1), � is the normal-state conductivity which
determines the normal-state resistance of the junction
according to RN � LJ=�AJ. The distribution function f
reduces to the equilibrium Fermi distribution when
VC � 0. The energy-dependent spectral supercurrent
[8,9], Im�jE�, can be calculated by solving the Usadel
equations [10]. Following the parametrization of the
Green functions given in Ref. [8], these equations in the
N region can be written
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FIG. 2. (a) Supercurrent vs control voltage VC at different
temperatures (T) for � � �=2 and TCc � 0:2TJc (see text). Bias
regions labeled (I), (II), and (III) indicate supercurrent en-
hancement due to quasiparticle cooling, high-voltage � state
and low-voltage � state in the high-temperature regime, re-
spectively. These are qualitatively explained in (b), (c), and (d),
where hatched areas represent the contribution to supercurrent
arising in such bias ranges (see text).
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jE � �sinh2���@x�; @xjE � 0;

hD@2
x�	 2iE sinh��

hD
2

�@x��2 sinh�2�� � 0;
(2)

where D is the diffusion coefficient and E is the energy
relative to the chemical potential in SJ. ��x; E� and
��x; E� are in general complex functions. For perfectly
transmissive contacts, the boundary conditions at the SJN
interfaces reduce to � � arctanh��J=E� and � � ��=2
in the reservoirs SJ, where � is the phase difference
between the superconductors.

As required by Eq. (1), we must determine the actual
quasiparticle distribution in the N region of the SINIS
structure. This is controlled by voltage (VC) and tempera-
ture and by the amount of inelastic scattering in the
control line. In the case of a short control wire with no
inelastic interactions, the quasiparticle distribution, ac-
cording to Ref. [11], is given by

f�E;VC� �
N 1F 1 	N 2F 2

N 1 	N 2
; (3)

where N 1;2 � N SC�E� eVC=2� and F 1;2 � F 0�E�
eVC=2�. The former are the BCS densities of states in
the reservoirs SC (labeled 1 and 2 in Fig. 1). F 0�E� is the
Fermi function at lattice temperature T [12]. In this case
Eqs. (1) and (3) yield the dimensionless transistor output
characteristics shown in Fig. 2(a). The latter plots the
supercurrent IJ vs control bias VC at different tempera-
tures for a long junction (i.e., �J 
 EJ

Th, where EJ
Th �

hD=L2
J is the Thouless energy of the SNS junction, as this

is the limit where the supercurrent spectrum varies
strongly with energy). We assumed � � �=2, TCc =TJc �
0:2, where TC�J�c are the critical temperatures of the super-
conductors SC�J� and LJ such that �J=E

J
Th � 300.

At the lowest temperatures, increasing VC leads to a
large supercurrent enhancement with respect to equilib-
rium slightly below VC � 2�C�T�=e � V�

C�T� (region I
in Fig 2). Further increase of bias leads to a � transition
(region II) and finally to a decay for larger voltages [14].
This behavior is explained in Figs. 2(b)–2(d), where the
spectral supercurrent (solid line) is plotted together with
f��E� � f�E� (dash-dotted line) for values of VC and T
corresponding to regions I, II, and III, respectively.
Hatched areas represent the integral of their product,
i.e., the supercurrent IJ of Eq. (1). In particular, region I
corresponds to the cooling regime where hot quasipar-
ticles are extracted from the normal metal [11,15]. The
origin of the � transition in region II is illustrated by
Fig. 2(c), where the negative contribution to the integral is
shown. We remark that the intensity of the supercurrent
inversion is very significant. It reaches about 60% of the
maximum value of IJ at VC ’ V�

C�T� in the whole tem-
perature range, nearly doubling the �-state value of the
137001-2
supercurrent as compared to the case of an all-normal
control channel [5,6]. In the high-temperature regime
(T=TCc * 0:6), when the equilibrium critical current is
vanishing, the supercurrent first undergoes a low-bias �
transition (region III in Fig. 2), then enters regions I and
II. This recover of the supercurrent from vanishingly
small values at equilibrium is again the consequence of
the peculiar shape of f [see Fig. 2(d)]. Notably, the super-
current enhancement around V�

C�T� remains pronounced
even at the highest temperatures, so that IJ attains values
largely exceeding 50% of the junction maximum super-
current. This demonstrates the full tunability of the super-
current through nonequilibrium effects induced by the
superconducting control lines. We remark that this is a
unique feature stemming from the superconductivity-
induced nonequilibrium population in the weak link.

The length LC of the SINIS control line can be addi-
tionally varied to control the supercurrent by changing
the effective strength of inelastic scattering in the N
region. For RT 
 RC � LC=�AC, the distribution func-
tion f�E� in the N region is essentially y independent and
we have
1

e2RT�C F
fN 1�F 1 � f�E�� 	N 2�F 2 � f�E��g 	 "

Z
d!d"!%I�!; "; E� � 0: (4)
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Here  F is the normal-metal density of states at the Fermi
energy, �C is the volume of the N region, and I is the net
collision rate at energy E. At low temperatures, the most
relevant scattering mechanism is electron-electron scat-
tering [16] and we can neglect the effect of electron-
phonon scattering. Then [7,17],

I �!; "; E� � I in�!; "; E� � Iout�!; "; E�; (5)

and

I in�!; "; E� � �1� f�"���1� f�E��f�"�!�f�E	!�;

(6)
FIG. 3. Supercurrent vs VC for various Kcoll with T � 0:1TCc
and TCc � 0:2TJc . Insets show the distribution function at
eVC � 1:5�C (left) and eVC � 2:5�C (right) calculated for
the same Kcoll values.

137001-3
I out�!; "; E� � �1� f�"�!���1� f�E	!��f�"�f�E�:

(7)
Electron-electron interaction is either due to direct
Coulomb scattering [18,19] or mediated by magnetic
impurities [16]. Below, we concentrate on the former but
the latter would yield a similar qualitative behavior.
From the calculation of the screened Coulomb interaction
in the diffusive channel, it follows [18] that % �
�3=2 for a quasi-one-dimensional wire and " �
��

���������
D=2

p
h3=2 FAC�

�1 [19]. We note that �C is the most
relevant energy scale to describe the distribution function
for different voltages VC. It is thus useful to replace ! !
!=�C and " ! "=�C in order to obtain a dimensionless
equation. Multiplying Eq. (4) by e2RT�C F, we obtain
N 1�F 1 � f�E�� �N 2�f�E� �F 2� � Kcoll

Z
d!d"!�3=2I�!; "; E�; (8)
-9
1.8
where Kcoll � �RT=RC��L
2
C"=D�

�������
�C

p
�

���
2

p
�RT=RK����������������������

��C=E
C
Th�

q
, RK � h=2e2, and EC

Th � hD=L2
C. In the ab-

sence of electron-electron interaction (Kcoll � 0), Eq. (3)
is recovered.

The influence of inelastic scattering on IJ is shown in
Fig. 3, which displays the critical current of a long junc-
tion at T � 0:1TCc for several values of Kcoll. Here IJ is
obtained by numerically solving Eq. (8). The effect of
electron-electron interaction is to strongly suppress the �
state and to widen the peak around V�

C. The � transition
vanishes for Kcoll ’ 100, but the IJ enhancement due to
quasiparticle cooling still persists in the limit of even
larger inelastic scattering [20]. The disappearance of the
� state can be understood by looking at the right inset of
Fig. 3, which clearly shows how f (calculated at eVC �
2:5�C) gradually relaxes from nonequilibrium towards a
Fermi function upon increasing Kcoll. The left inset
shows how f (evaluated at eVC � 1:5�C) sharpens, thus
enhancing IJ, by increasing Kcoll. This effect follows
from the fact that inelastic interactions redistribute the
occupation of quasiparticle levels in the N region, thus
increasing the occupation at higher energy. As a conse-
quence, higher-energy excitations are more effectively
removed by tunneling, even for biases well below and
not only around V�

C (as in the case of Kcoll � 0). At the
same time, supercurrent recovery at high temperature is
gradually weakened upon enhancing Kcoll. Notably,
these calculations show that a rather large amount of
inelastic scattering is necessary to weaken and com-
pletely suppress the � state. For example, using
Al=Al2O3=Cu as materials composing the SINIS line,
Kcoll � 1 corresponds to use a fairly long control line
with LC ’ 2:3 'm [21].

Changing the ratio TCc =T
J
c shifts the IJ response

along the VC axis, the shape of the characteristics being
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FIG. 4. (a) Power dissipated in the SINIS line vs VC calcu-
lated for various ratios TCc =TJc and T � 0:01TJc . (b) Noise power
S vs VC calculated for the same parameters as in (a).
(c) Differential current gain GI vs VC for TCc =TJc � 0:2. The
inset shows GI in the high-bias region. In all these calculations
we set Kcoll � 0 and TJc � 9:26 K (Nb).
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virtually independent of TCc . This translates into a differ-
ent magnitude of control voltages VC and power dissipa-
tion P � ICVC, where IC is the control current across the
SINIS channel. The function P�VC� is plotted in Fig. 4(a)
for some ratios TCc =TJc at T � 0:01TJc , assuming RT �
103 � and TJc � 9:26 K. The impact of �C in controlling
power dissipation is easily recognized. These effects
clearly indicate that �C � �J is the condition to be
fulfilled in order to minimize P. In practice, the power
dissipation for VC > V�

C constitutes an experimental
problem as this energy needs to be carried out from the
reservoirs. In a similar way the noise properties of the
system are sensitive to the different TCc =TJc ratios.
Assuming that the noise through one junction is essen-
tially uncorrelated from the noise through the other, it
follows that the input noise power S in the control line
can be expressed as

S �
1

RT

Z 1

�1
dEN 1ff�E��1�F 1� 	F 1�1� f�E��g:

(9)

S�VC� from Eq. (9) is shown in Fig. 4(b) for the same
parameters of Fig. 4(a). For example, for TCc =TJc � 0:1
(corresponding roughly to the combination Al/Nb), P
obtains values of the order of a few 10�15 W and S of
some 10�30A2 Hz�1 in the cooling regime, while these
values are enhanced, respectively, to few tens of 10�12 W
and 10�26 A2 Hz�1 for biases around the � transition.

In light of the possible use of this operational principle
for device implementation, let us comment on the avail-
able gain and switching times. Input and output voltages
are of the order of �C=e and EJ

Th=e, respectively, so that it
seems hard to achieve voltage gain. On the other hand,
differential current gain GI � dIJ=dIC � �dIJ=dVC� �
�dIC=dVC�

�1 can be very large. For VC > V�
C a simple

estimate gives GI � �EJ
Th=�C��RT=RN�, meaning that

with realistic ratios RT=RN (�103), GI can exceed 102.
GI�VC� calculated for TCc =TJc � 0:2 is plotted in Fig. 4(c)
(the inset shows the gain in the �-state region). This
calculation reveals that GI can reach huge values, with
some 105 for VC < V�

C [22] and several 102 in the opposite
regime. Remarkably, gain is almost unchanged also in the
presence of weak inelastic scattering (i.e., Kcoll � 1).
The same holds for P and S. As far as power gain is
concerned, the Josephson junction has to be operated in
the dissipative regime in order to get out power. An
estimate for the differential power gain gives GP �
dPJ=dP� �EJ

Th=�C�GI � 103–104 for VC < V�
C and

�10 for VC > V�
C. The highest operating frequency  of

the transistor is limited by the smallest energy in the
system:  � min1

h f�C;�J; E
C
Th; E

J
Th; h�RTC�

�1g; where C
is the tunnel junction capacitance. For an optimized de-
vice, working frequencies of the order of 1011 Hz can be
experimentally achieved in the high-voltage regime
VC > V�

C. For VC < V�
C, conversely, the response is slower
137001-4
(somewhat below 109 Hz), owing to the long discharging
time through the junctions.
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