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Bose-Einstein Condensation, Phase Coherence, and Two-Fluid Behavior in 4He
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It is shown that the assumption that the many particle wave functions describing superfluid 4He have
some phase coherence properties of correlated basis functions provides a new explanation of the link
between Bose-Einstein condensation and two fluid behavior. This assumption also implies that the
condensate fraction is proportional to the superfluid fraction, in agreement with experiment, and
provides a simple quantitative explanation of the anomalous reduction in spatial order and liquid
density, observed as the temperature is lowered in superfluid 4He.
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f�T� �
V i

�i�T� d~ss�� �i�~rr; ~ss�d~rr�� ; (2)
where �ij�~ss� exp�i ~kkj 	 ~rr1� is the sum of the terms in (4)
Convincing evidence that two fluid behavior in 4He [1]
is linked to Bose-Einstein condensation (BEC) is pro-
vided by neutron scattering measurements [2–7] and path
integral Monte Carlo calculations [8,9], which both show
that a finite Bose condensate fraction appears at the same
temperature as a finite superfluid fraction. However, the
only existing microscopic derivation of this link is based
on the properties of the weakly interacting Bose gas [10–
12], whereas liquid helium is a strongly interacting sys-
tem. Another approach to the theory of liquid helium is to
expand the many particle wave function in terms of
correlated basis functions (CBF’s). CBF’s incorporate
the spatial correlations of the ground state and, hence,
do include strong interactions. This method has been used
by numerous workers [13–19] to accurately calculate both
the ground state and the excited state properties of super-
fluid 4He. It is shown that the phase coherence properties
of CBF’s provide a new explanation of two fluid behavior
and also of the reduction in spatial order [20–22] and
liquid density [23], observed in superfluid 4He as the
temperature is reduced. This uniquely anomalous behav-
ior has been much discussed previously [24–29], but there
is at present no agreement as to why it occurs or how it is
linked to BEC.

We consider an N particle system at volume V and
temperature T, in the limit N ! 1, at constant N=V.
Denoting an arbitrarily chosen particle coordinate as ~rr
and the coordinates of all other particles as ~ss, the N
particle wave functions are

�i� ~rr; ~ss� � j�i� ~rr; ~ss�j exp�i�i�~rr; ~ss��: (1)

In 4He the condensate fraction f is generally taken as the
probability that an arbitrarily chosen particle occupies a
single particle momentum state exp�i ~kkj 	 ~rr�=

����
V

p
, which

for simplicity is taken as ~kk0 � 0. It then follows from the
standard definition of the single particle density matrix
[30,31] in terms of the states �i�~rr; ~ss� that f can be ex-
pressed as [32,33]

1 X Z �����Z
�����2
0031-9007=04=92(13)=135302(4)$22.50
where �i�T� is the probability that state i is occupied at
temperature T. The condensation temperature TB is de-
fined by the condition f � 0 for T � TB.

It has been shown previously [34] that if f � 0, i.e., for
0 � T < TB, Eq. (2) implies that occupied states �i�~rr; ~ss�
in 4He, considered as functions of ~rr, must have the follow-
ing properties. (a) �i� ~rr; ~ss� must be nonzero within a
volume / V. (b) The phases �i� ~rr; ~ss� and �i�~rr0; ~ss� are
correlated as j ~rr� ~rr0j ! V1=3. Furthermore, in the pres-
ence of BEC, the ground state �0�~rr; ~ss� must be ‘‘phase
coherent’’; i.e., the phase �0� ~rr

0; ~ss� is precisely determined
by the phase �0� ~rr; ~ss� for all ~rr; ~rr0. This is true because the
phase of the ground state wave function �0�~rr; ~ss� of any
Bose system is independent of ~rr; ~ss [35]. Note that in this
sense a Bose condensed system must occupy a coherent
state at T � 0, even though N is fixed [36]. In contrast, for
T � TB, Eq. (2) implies that occupied states �i� ~rr; ~ss� must
be ‘‘phase incoherent’’; i.e., the phases �i� ~rr; ~ss� and
�i�~rr

0; ~ss� are randomly oriented when j~rr� ~rr0j > rC, where
rC is a finite ‘‘coherence length.’’

We consider the way in which this change from phase
coherence at T � 0 to phase incoherence for T � TB
occurs in CBF’s. The CBF wave function is essentially a
product of the exact many particle ground state wave
function �0�~rr; ~ss�, with the ideal Bose gas wave function
�i�~rr; ~ss�.

�i� ~rr; ~ss� � Ci�i�~rr; ~ss��0�~rr; ~ss�; (3)

where Ci is a normalization constant [37],

�i�~rr1; ~ss� �
1�������������

NPVN
p X

P

exp�ik0 	 ~rr1�

� exp�ik1 	 ~rr2� . . . exp�ikJ 	 ~rrN�; (4)

~rr2 . . . ~rrN is denoted as ~ss, and the sum is over the NP
permutations of the N particle coordinates in the occu-
pied states ~kkj. �i� ~rr1; ~ss� can be rearranged into the form

�i� ~rr1; ~ss� �
X
j

�ij�~ss� exp�i ~kkj 	 ~rr1�; (5)
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containing the factor exp�i ~kkj 	 ~rr1�. It follows from (3) and
(5) that

�i�~rr; ~ss� � �iC�~rr; ~ss� ��iR�~rr; ~ss�; (6)

where

�iC�~rr; ~ss� � Ci�i0�~ss��0�~rr; ~ss� (7)

and

�iR�~rr; ~ss� � Ci

X
j�0

�ij�~ss� exp�i ~kkj 	 ~rr1��0� ~rr; ~ss�: (8)

The phase of �iR� ~rr; ~ss� varies randomly with ~rr, over
distances rC � 1=�k� �V=N�1=3, where �k is the range
of values of ~kkj included in (8). Hence �iR�~rr; ~ss� is phase
incoherent and does not contribute to f [34,38]. It, there-
fore, follows from (2), (6), and (7) that

f�T� �
X
i

�i�T�
Z

jCi�i0� ~ss�j2f0�s� d~ss; (9)

where

f0�~ss� �
1

V

�������
Z

�0�~rr; ~ss� d~rr

�������
2
: (10)

Equation (9) gives the mean value of the condensate
fraction. Fluctuations from the mean are due to the range
of values of jCi�i0� ~ss�j2 and f0�s� corresponding to prob-
able i and ~ss. It is assumed that fluctuations in f�T� are
negligible, as is generally the case as N ! 1. This im-
plies that jCi�i0�~ss�j2 and f0�s� must be the same for all
probable i and ~ss at a given T and that jCi�i0� ~ss�j

2 is
effectively a function only of T.

jCi�i0�~ss�j2 � wC�T�: (11)

It follows from Eqs. (9) and (11) that

f�T� � wC�T�f�0�: (12)

Thus, at T � 0, wC�T� � 1, and �i� ~rr; ~ss� � �0� ~rr; ~ss� is
phase coherent, whereas for T � TB, wC�T� � 0, and
�i� ~rr; ~ss� � �iR� ~rr; ~ss� is phase incoherent, as required.

It follows from Eq. (6) that
Z

j�i�~rr; ~ss�j
2d~rr � wiC�s� � wiR�s� � Xi� ~ss�; (13)

where

wiC�s� �
Z

j�iC� ~rr; ~ss�j2d~rr (14)

with an analogous expression for wiR�s� and

Xi� ~ss� �
Z

�iC� ~rr; ~ss��iR� ~rr; ~ss�d~rr� CC; (15)

and CC denotes complex conjugate. Dividing the total
volume V into M volumes Vm, each of size r3C, where rC is
the coherence length of �iR�~rr; ~ss�, Eq. (15) can be formally
expressed as
135302-2
Xi�~ss� �
XM
m�1

jAm�~ss�j exp�i’m� ~ss�� � CC; (16)

where by definition of the Vm, the phase ’m� ~ss� varies
randomly with m and

jAm�~ss�j �

�������
Z
Vm

�iC� ~rr; ~ss��iR�~rr; ~ss�d~rr

������� (17)

is the amplitude of the contribution from region m. It
follows from condition (a) above that �0� ~rr; ~ss� and, hence
from Eqs. (7) and (8), �iC�~rr; ~ss� and �iR� ~rr; ~ss� must be
nonzero within a macroscopic volume / V. Thus, it fol-
lows from (14) that on average

jAm�~ss�j /
��������������������������
wiC�~ss�wiR� ~ss�

p r3C
V

�

��������������������������
wiC� ~ss�wiR� ~ss�

p
M

: (18)

Since, according to (16), Xi� ~ss� is the sum of M randomly
phased contributions, it follows from (18) that

Xi�~ss� �
�����
M

p
jAm�~ss�j �

��������������������������
wiC� ~ss�wiR� ~ss�

p
�����
M

p /
1����
N

p : (19)

Providing that wiC�~ss� � wiR� ~ss�, Xi�~ss� is negligible com-
pared to both wiC�~ss� and wiR� ~ss� in the limit N ! 1. Note
that this is not true in the limit T ! 0, when wiR�~ss� ! 0
or in the limit T ! TB, when wiC� ~ss� ! 0.

However, not too close to T � 0 or T � TB, it follows
from (13) and (19) that as N ! 1

X
i

�i�T�
Z

j�i�~rr; ~ss�j2d~rrd~ss � wC�T� � wR�T� � 1;

(20)

where

wC�T� �
X
i

�i�T�
Z

j�iC� ~rr; ~ss�j2d~rrd~ss (21)

with an analogous expression for wR�T�. It follows from
(20) that wC�T� can be interpreted as the weight of the
coherent component and wR�T� as the weight of the
incoherent component.

It follows from similar arguments that other integrals
of �i� ~rr; ~ss� over ~rr; ~ss split into two independent components
of weights wC�T� and wR�T�. In particular, the fluid
flow [38]

F �
�hN
M

X
i

�i�T�
Z

j�i�~rr; ~ss�j2
@
@~rr

�i�~rr; ~ss�d~rrd~ss

� wC�T�FC � wR�T�FR; (22)

where Eqs. (7) and (11) imply that FC � F0 is the ground
state flow, while FR is the flow associated with elemen-
tary excitations. Similarly, the total fluid energy is

E � wCE0 � wRER; (23)

the entropy is
135302-2
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S �

�
@E
@T

�
V
� wCS0 � wRSR; (24)

and the pressure is

P �

�
@E
@V

�
T
� wCP0 � wRPR; (25)

where E0, S0, and P0 are the ground state values. The
entropy of the coherent component S0 � �@E0=@T�V � 0
while SR � 0. Clearly the two components have identi-
cal properties to the superfluid and the normal fluid of
4He. Hence, wC�T� can be identified with the superfluid
fraction #S�T� and wR�T� with the normal fluid frac-
tion #N�T�.

#S�T� � wC�T�; #N�T� � wR�T�: (26)

This identification has a number of implications, which
can be tested by experiment.

It follows from Eqs. (12) and (26) that #S�T� is propor-
tional to f.

f�T�=f�0� � #S�T�: (27)

Figure 1 compares neutron scattering measurements of
f�T�=f�0� in superfluid 4He with tabulated values [39] of
#S�T�. It can be seen that within experimental error,
Eq. (27) is satisfied in superfluid 4He. It should be stressed
that (27) is not valid as T ! 0 [40,41] or as T ! TB [42],
as mentioned following Eq. (19).

At a given T and V, Eqs. (25) and (26) also imply that

P�T; V� � #S�T; V�P0�V� � #N�T; V�PR�T; V�; (28)

where P0�V� is the ground state pressure. For comparison
of (28) with experiment, the approximation was made that
PR�T; V� � P�TB; V�. Numerical values of #S�T; V�,
P0�V�, and P�TB; V� were taken from the tabulated values
FIG. 1. The points � give the superfluid fraction [39]. Glyde
et al. [7] give f�T�=f�0� � 1� �T=T%�&, with & � 5:5� 1:0,
and the solid line was calculated from this expression while the
dashed lines define the corresponding error. The points � and
corresponding errors are taken from measurements of f by
Sosnick et al. [5].
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of Maynard [43] and used to calculate P�T; V� from (28).
The ratio R�T; P� � V�0; P�=V�T; P�, of the liquid density
at T to that T � 0 was calculated by linear interpolation
of the calculated P�T; V� table and is shown as the solid
lines in Fig. 2. The directly measured [43] values of
R�T; P�, shown as the points, are in good agreement
with the calculation. Thus, the anomalous density varia-
tion of the superfluid with temperature can be attributed
to the different partial pressures exerted by the superfluid
and normal fluid components in (28).

The static structure factor S� ~qq� can be expressed as [44]

S� ~qq� � 1� �N � 1�
X
i

�i�T�
Z

j�i�~rr1; ~ss�j
2

� exp�i ~qq 	 � ~rr1 � ~rr2��d~rr1d~ss: (29)

The cross terms between �iC�~rr1; ~ss� and �iR� ~rr1; ~ss� in the
integral over ~rr1 in (29) are negligible. Thus (6), (7), (11),
(26), and (29) imply that

S� ~qq� � #S�T�S0� ~qq� � #N�T�SR� ~qq�; (30)

where S0� ~qq� is the static structure factor at T � 0. For
comparison with experiment the approximation was
made that SR� ~qq� � SB� ~qq�, where SB� ~qq� is S� ~qq� at the
superfluid transition. S0� ~qq� was taken as the 1 K result
obtained by Sears and Svensson [20]. The solid line in
Fig. 3 shows �S� ~qq� � 1�=�SB� ~qq� � 1� calculated from (30),
with these assumptions. The points with errors were also
taken from Ref. [20]. It can be seen that the measurements
of S�q� are consistent with (30) and that the reduction in
spatial order as the temperature is lowered can therefore
be attributed to the increasing weight of the superfluid,
which is more disordered than the normal fluid, for rea-
sons discussed previously [38]. To summarize, the as-
sumption that in the presence of BEC the wave function
in 4He, like CBF’s, can be divided into coherent and
incoherent components, provides a new explanation of
FIG. 2. Shows the ratio R of the density at temperature T
to that at T � 0, at pressures �, 1 bar; +, 5 bar; *, 10 bar; and
�, 20 bar. The solid lines were calculated from (28). The points
were calculated from tabulated values of V�T; P� [43].
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FIG. 3. The solid line is calculated from Eq. (30). The points
were obtained from the experimental work of Sears and
Svensson [20].
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two fluid behavior and leads to the three new predictions
illustrated in Figs. 1–3, which agree well with experi-
ments on 4He.
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