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In this Letter, we introduce the concept of stabilized vector solitons as nonlinear waves constructed
by the addition of mutually incoherent fractions of Townes solitons that are stabilized under the effect
of a periodic modulation of the nonlinearity. We analyze the stability of these new kinds of structures
and describe their behavior and formation in Manakov-like interactions. Potential applications of our
results in Bose-Einstein condensation and nonlinear optics are also discussed.
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Since the introduction of the concept of soliton as
solitary water waves with robust asymptotic behavior
after mutual collisions, many other physical systems
have been found with similar dynamics, always described
by nonlinear wave equations [1]. For solitons of nonlinear
Schrodinger equations (NLSE), the main interest in the
early investigations was related to practical applications
in optical telecommunications, nowadays well estab-
lished [2]. The recent interest on solitons in the field of
Bose-Einstein condensation (BEC) in alkali gases with
negative scattering length [3—6] shows the timeliness of
the topic and its central place in modern physics.

Despite the success of the concept of soliton, these
structures arise mostly in (1 + 1)-dimensional configura-
tions. In the NLSE case, this is mainly due to the well-
known collapse property in multidimensional scenarios
[7]. In the optical context, collapse means that a laser
beam with power higher than a critique threshold will be
strongly self-focused to a singularity when it propagates
in a Kerr-type nonlinear medium, whereas for lower
powers it will spread as it propagates. This behavior has
also been observed in experiments with matter waves [8].

Since collapse prevents the stability of multidimen-
sional “‘soliton bullets” in systems ruled by NLSE, great
effort has been devoted to search for systems with stable
solitary waves in multidimensional configurations [9]. A
new way to generate stabilized two-dimensional solitary
waves has been recently proposed for optical systems
[10,11]. The idea is to prevent collapse by using a spatial
modulation of the Kerr coefficient (the nonlinearity) of
the optical material so that the beam becomes collapsing
and expanding in alternating regions and is stabilized in
average. The idea has been extended to the field of matter
waves in Refs. [12,13]. Finally, in Ref. [14] some general
results are provided. Also, in Ref. [15] the NLSE with a
time-dependent nonlinearity has been studied.

In the present Letter, we will extend this analysis to the
case of mutually incoherent beams with unexpected and
surprising results. This is, to our knowledge, the first
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theoretical evidence of two-dimensional stabilized vector
solitons (SVS), a new kind of nonlinear waves which can
be constructed in two ways: by direct combination of
fractions of Townes solitons or as a result of Manakov
interactions [16] between Townes solitons. In both cases,
the stabilization against collapse is obtained by the effect
of a periodic modulation of the nonlinearity.

The model—Let us consider an n-component system
modeled by equations of the type

1 n
o = _EAMj"‘g(f)(Z ajk|uk|2)uj, (L

k=1

where j=1,...,n, u;R* XR*—=C, A=20/x>+
9%/9y*, a; € R are the nonlinear coupling coefficients
and g() is a periodic function accounting for the modu-
lation of the nonlinearity.

Equation (1) is the natural extension of the Manakov
system [16] to two transverse dimensions and an arbi-
trary number of components. In optics, for spatial solitons
t is the propagation coordinate and u; are n mutually in-
coherent beams. One-dimensional Manakov-type models
have been extensively studied in nonlinear optics, mainly
due to the potential applications of Manakov solitons in
the design of all-optical computing devices [17]. In BEC,
these equations (with an additional trapping term) de-
scribe the dynamics of multicomponent condensates, u;
being the wave functions for each of the atomic species
involved [18,19].

In the scalar case (n = 1), it is well known that, if g is
constant, there is a stationary radially symmetric solution
of Eq. (1) (the so-called Townes soliton): u(r,r) =
®,(r)e'. This solution is unstable since there are small
perturbations of it which lead either to collapse or spread-
ing of the distribution. Because of the scaling invariance
of the cubic NLSE, a family of Townes solitons can be
generated by making ®,(r) = A1/2d,(A1/2),

It is known that an adequate modulation of the non-
linearity stabilizes a Townes soliton yielding to a rapidly
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oscillating stabilized Townes soliton (STS), which we
refer hereafter as ®g. In this Letter, we use g(r) = go +
g1 cos{dz, but we expect that most of our results with
similar periodic functions will be qualitatively the
same [14].

Stabilized vector solitons.—For a given set of parame-
ters aj; it is possible to use stabilized Townes solitons to
build explicit solutions of Eq. (1). These solutions are
constructed by taking u; = Py =a;®s j=1,...,n

J
for any set of coefficients «; satisfying

ajal + - +ajal =1, j=1...,n (2

It is not obvious that these new solutions will be stabi-
lized by a periodic modulation g(7) of the nonlinearity.
Writing u; = (I)s, + 6, the equations for §; contain
cross-modulation terms which could lead to growth of
these small perturbations. To test that the stabilization is
possible in a wide range of configurations, we have con-
sidered several important examples. First, we have
studied the most relevant case n = 2 and integrated nu-
merically Eq. (1) with different initial data of the form
u; = a;®g satisfying (2) and found that these new vector
solitons remain stabilized as shown in Fig. 1. From now
on, we will name these structures, composed of fractions
of Townes solitons, as SVS. We will see below how they
emerge in collisions of mutually incoherent STSs, which
correspond to the so-called Manakov interactions [16].

We have studied other situations such as a symmetric
superposition of four STSs (n = 4) with a; = 1//4 and
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FIG. 1 (color online). (a) Stabilized vector solitons for a; =
a, =1/ V2 (the evolution for u,, not shown here, is very
similar). Shown are the time evolution of the width W, =
[ [re(® + y)[u?]"/? and amplitude max,cp|u;(x, 1)]. The
insets show pseudocolor plots of |u(z x, v)|? for different
times. (b) Same as (a) but for a; = 1/4/3, a, = m For
both cases g(¢t) = —27 + 87 cos(40r).
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found similar results. Thus, these structures exist in a
wide range of parameters and configurations.

Manakov interactions of STS.—Depending on the mu-
tual velocity of the two interacting STS, we have divided
the regime of collisions in two different ones: fast and
slow collisions. As we will see below, one of the main
results of our work is the possibility of obtaining SVS
after slow collisions of STS.

First, we have studied collisions of ‘“‘fast” STSs after
which the solitons emerge with only moderate modi-
fications of their amplitude and width as is shown in
Fig. 2. It can be seen [Fig. 2(b)] that, during the collision,
the soliton becomes spatially asymmetric. An internal
asymmetric breathing mode of small amplitude is excited
which decays at longer times (not shown in the figure) to
the “normal” symmetric breathing mode shown by STSs.

These behaviors can be accounted for by an averaged
Lagrangian approach. Equation (1), when aj; = a;;, can
be obtained from the Lagrangian density

i ou’ ous 1 1
L=—(u—L+u—2+H .>+—V 24+~ |Vu|?
(0 52 e )+ SVl + 51Vl

L 20
2

We choose a simple ansatz accounting for head-on sym-
metric collisions of equal stabilized solitons moving with

(aylug|* + 2ap;lug Plugl? + aplus|*).

lu(zy)l®
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FIG. 2 (color online). Fast collisions of stabilized Townes
solitons. Initial data are (0, r) = e™M*®(|r + 1),
u(0, 1) = erd(r + 1) with v, = (5/v/2,5/42), v, =
(=5/+/2,5/+/2) and r; = (=6, —6), r, = (6, —6). (a) Surface
plots of |u;|?> and |u,|> for different times. (b) Evolution of
the widths W, (1) = [ [(x — ()2l (x, y, 0212, W, (1) =
[[( = OGN uy(x,y, 0?12, (c) Evolution of the maximum
amplitude max, ,cge |u; (x, y, ).
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opposite speeds and centered on (—¢, 0) and (¢, 0):
u = Ae—(x—é’)2/2a))2[—y2/2w}2,+iBXx2+i/3yy2eiwcy (3a)
Uy = Ae*(x+€)2/2w§7y2/2w}2,+iBXx2+i/3yy2e*ivx‘ (3b)

Although Gaussians do not have the right asymptotic
decay as STSs, our choice simplifies the calculations
and is enough for our present objectives. The standard
procedure [20] leads to the equations (for aj = 1)

. Ng(t
¢ = g&e*%’z/w{ (4a)
TWIWy,
1 Ng(t 22 4¢2
W, =—+ #[1 + e /W«r<1 - —zﬂ (4b)
wy 2Twiw, w5
1 Ng(t 20,2
Wy =— + A(l + 726/, (40)

w;y 27waw§

together with the complementary relations 8; = w; 2w j
(j=xy), v=4€—2€B,, and the conservation law
N(1) = 7lAlw,0, = 7|A(0)*w,(0)»,(0). The different
terms in Eqgs. (4) account for the phenomenology shown
in Fig. 2 and other “fast collisions” studied. For example,
they contain the asymmetric interaction [notice the dif-
ferences between Egs. (4b) and (4c)] due to the fact that
both solitons approach along the x axis and thus become
more elongated along that direction as seen in Fig. 2(b).
We have numerically integrated Eqgs. (4) for fast colli-
sions taking as initial data stabilized Gaussian functions
[11,14] and have found results similar to those shown
in Fig. 2.

The regime of slow collisions is in the range
vy — v{| ~ 3. In this case, the collisions of STSs lead
to their splitting into two parts, and formation of two
vector solitons takes place as shown in Figs. 3(a) and 3(b).
It is remarkable and one of the main results of the paper
that the collision mechanism allows the complex co-

(2) P )P

0.5

0 5 o, 15 20

FIG. 3 (color online). Head-on collisions of STSs for initial
data v, = —v, = 0.3. (a) Surface plots of |u;|?. (b) Surface
plots of |u,|?>. (c) Evolution of the maximum amplitude
max, ere lu (x, y, ).
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herent rearrangement necessary for the formation of
the vector solitons. The fraction of the soliton distributed
in the two parts is a function of the only relevant pa-
rameter for direct collisions |v, — v,| (due to the
Galilean invariance) as shown in Fig. 4(a). In the range
0.2 < |v, — v4] < 3, we observe formation of two vector
solitons which seem to be either unstable or perform-
ing high amplitude oscillations for higher speeds and
stable in the lower range of speeds (approximately 0.2 <
vy — v;| < 1.2). If the speed is decreased further, we
observe two outgoing vector solitons with complex tran-
sient dynamics and nontrivial dependence of the fraction
transferred as a function of |v, — vy|.

Finally, if the initial speed of the colliding solitons is
very small or zero, we have observed a quasibound state
of two SVSs which shows several recurrent collisions as
shown in Fig. 5. From our simulations, we cannot con-
clude if this is a true bound state or it finally decays to
vector solitons. In Fig. 4(b), we summarize the results of
our numerical exploration of STS collisions.

We want to point out that Egs. (4) provide a reasonably
good description of the phenomena described here as far
as the ansatz given by Egs. (3) can describe these complex
dynamical behaviors. An example: For very low speeds,
the variational equations predict the formation of an
oscillating bound state of two STSs. Although this is
not the real behavior (a bound state of two SVSs is
formed), we get bound states.

The formation of vector solitons from stabilized scalar
solitons is a nontrivial phenomenon since there is a deli-
cate balance of both components which must be satisfied
in order to avoid destabilization either to collapse or
expansion of these structures. It is curious that the system
is able to interchange just the right amount of energy to
keep both solitons bounded. In fact, the collision mecha-
nism described here can be seen as a way to generate
appropriate stabilized vector solitons up from STSs which
could be otherwise difficult to obtain.

03l (a)
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FIG. 4. Asymptotic behavior after head-on collisions of STSs
of the form u; = ®(Ir — €])e™*, u, = ®(Jr + €])e’”>* and
large enough € (~4). (a) Regimes of behavior as functions of
vy, v,. (b) Quotient (f) of the squared amplitudes of the small
and the large peaks which are generated after the collision
when a VS is formed [see Fig. 3] for the regime of speeds in the
range 0.2 < |v, — vy = 1.2.
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FIG. 5 (color online). Oscillations after a collision of STSs
with v; = v, = 0. (a) Isosurface plot of |u,(z, x, y)|*> (shown
are isosurfaces corresponding to 0.05, 0.15, and 0.25).
(b)—(e) Surface plots of |u;(t x, y)|*> for (b) t =0, (c) t = 50,
(d) t = 100, and (e) t = 150. The corresponding evolution for
u, is symmetric with respect to the y axis.

It is also remarkable that no collapse phenomena
are observed in our simulations, rather instead most of
the collisions observed lead to remarkably robust sca-
lar or vector solitons. This is very different from what
happens in coherent collisions of STSs which lead to
collapse.

Applications to optical systems.—In optics, a simple
way to obtain a periodically varying nonlinearity is
to use a collection of parallel planar plates, correspond-
ing to two different nonlinear optical materials. The
functions u#; and u, can be seen as two orthogonal states
of polarization (which in the absence of nonlinear bi-
refringence leads to symmetric a;;). Taking our initial
width to correspond to a laser spot of 100 wm, the plates
should be about 2.5 um thick in order to reproduce the
g(#) modulation. For a typical Nd:YAG with A =
1.064 um and 1 GW peak power, adequate materials
for the plates would be GaAs (1, = —3 X 10713 cm?/W)
and 4-dimethylamino-4-nitrostilbene polymer [21] (n, =
2 X 10713 ¢cm?/W). Using this system, one should be able
to observe the striking propagation of a stable vector
soliton in Kerr media.

We must stress that the limit n — oo of our model could
be used to study nonlinear propagation of totally inco-
herent light.
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