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The standard and renormalized coupled cluster methods with singles, doubles, and noniterative
triples and their generalizations to excited states, based on the equation of motion coupled cluster
approach, are applied to the 4He and 16O nuclei. A comparison of coupled cluster results with the results
of the exact diagonalization of the Hamiltonian in the same model space shows that the quantum
chemistry inspired coupled cluster approximations provide an excellent description of ground and
excited states of nuclei. The bulk of the correlation effects is obtained at the coupled cluster singles and
doubles level. Triples, treated noniteratively, provide the virtually exact description.
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states in nuclei, exploiting the equation of motion coupled
cluster formalism [15,16]. We discuss several approxima-

of the reference (R0), one-body (R1), and two-body (R2)
components obtained by diagonalizing �HH�CCSD� in the
The description of finite nuclei requires an understand-
ing of both ground- and excited-state properties based on
a given nuclear Hamiltonian. While much progress has
been made in employing the Green’s function Monte
Carlo calculation [1] and no-core shell-model [2] tech-
niques, these methods have apparent limitations to light
nuclei. Given that present nuclear structure research fa-
cilities and the proposed Rare Isotope Accelerator will
continue to open significant territory into regions of
medium-mass and heavier nuclei, it becomes imperative
to investigate methods that will allow for a description of
medium-mass systems. Coupled cluster theory is a par-
ticularly promising candidate for such an endeavor due to
its enormous success in quantum chemistry [3–9].

Coupled cluster theory originated in nuclear physics
[10,11] around 1960. Early studies in the 1970s [12]
probed ground-state properties in limited spaces with
free nucleon-nucleon interactions available at the time.
The subject was revisited only recently by Guardiola
et al. [13], for further theoretical development, and by
Mihaila and Heisenberg [14], for coupled cluster calcu-
lations using realistic two- and three-nucleon bare inter-
actions and expansions in the inverse particle-hole energy
spacings. However, much of the impressive development
in coupled cluster theory made in quantum chemistry in
the last 15–20 years [5–9] still awaits applications to the
nuclear many-body problem.

In this Letter, we apply quantum chemistry inspired
coupled cluster methods [3–9,15,16] to finite nuclei. We
show that the coupled cluster approach is numerically
inexpensive and accurate by comparing our results for
4He with results from exact diagonalization in a model
space consisting of four major oscillator shells. For the
first time, we apply coupled cluster theory to excited
0031-9007=04=92(13)=132501(4)$22.50 
tions within coupled cluster theory and also compute the
ground state of the 16O nucleus within the same model
space. We remind the reader that certain acronyms have
become standard in quantum chemistry. For this reason,
we use the same abbreviations in this Letter.

Coupled cluster theory is based on an exponential
ansatz for the ground-state wave function j�0i �
exp�T�j�i. Here T is the cluster operator and j�i is the
reference determinant. In the CCSD (‘‘coupled cluster
with singles and doubles’’) method, we truncate the
many-body expansion of the cluster operator T at two-
body components. The truncated cluster operator T�CCSD�,
used in the CCSD calculations, has the form [17]
T�CCSD� � T1 � T2. Here T1 �

P
i;at

i
aaaai and T2 �

1
4

P
ij;abt

ij
aba

aabajai are the singly and doubly excited
clusters, with indices i; j; k (a; b; c) designating the
single-particle states occupied (unoccupied) in the refer-
ence Slater determinant j�i and ap (ap) representing the
creation (annihilation) operators.We determine the singly
and doubly excited cluster amplitudes tia and tijab, defining
T1 and T2, respectively, by solving the nonlinear
system of algebraic equations, h�a

i j �HH
�CCSD�j�i � 0,

h�ab
ij j �HH

�CCSD�j�i � 0, where �HH�CCSD� � exp��T�CCSD�� 	
H exp�T�CCSD�� is the similarity-transformed Hamil-
tonian and j�a

i i and j�ab
ij i are the singly and doubly

excited Slater determinants, respectively. Once T1 and
T2 amplitudes are determined, we calculate the
ground-state CCSD energy E�CCSD�

0 as h�j �HH�CCSD�j�i.
For the excited states j�Ki and energies E�CCSD�

K (K > 0),
we apply the EOMCCSD (‘‘equation of motion
CCSD’’) approximation [15,16] (equivalent to the
linear response and time-dependent CCSD methods
[18]; cf. Refs. [5,6,16,19]), in which j�Ki � R�CCSD�

K 	
exp�T�CCSD��j�i. Here R�CCSD�

K � R0 � R1 � R2 is a sum
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same space of singly and doubly excited determinants
j�a

i i and j�ab
ij i as used in the ground-state CCSD

calculations.
The CCSD and EOMCCSD methods are expected to

describe the bulk of the correlation effects with inexpen-
sive computational steps that scale as n2on4u, where no (nu)
is the number of occupied (unoccupied) single-particle
orbitals. While the inclusion of triply excited clusters T3

in the cluster operator T and three-body component R3 in
the excitation operator RK (or, using the language of
quantum chemistry, ‘‘triples’’) increases the accuracy of
the method, the resulting full CCSDT (‘‘T’’ stands for
triples) [20] and EOMCCSDT [21] methods scale as n3on5u
and are rather expensive. For this reason, we estimate the
effects of T3 and R3 on ground- and excited-state energies
by adding the a posteriori corrections due to triples to the
CCSD/EOMCCSD energies, which require only the n3on4u
noniterative steps. These corrections can be derived using
the method of moments of coupled cluster equations
[8,9,22–24] and the perturbative analysis of the
CCSDT/EOMCCSDT equations. The resulting ground-
and excited-state triples corrections, �0 and �K (K > 0),
respectively, are calculated with the CR-CCSD(T)
[‘‘completely renormalized CCSD(T)’’] approach
[8,9,22,23] in which

�K �
1

36

X

ijk;abc

h ~��Kj�
abc
ijk iM

ijk
abc�K�=�K: (1)

Here j�abc
ijk i are the triply excited determinants and

Mijk
abc�K� are the generalized moments of the CCSD

(K � 0) and EOMCCSD (K > 0) equations [22–24],
Mijk

abc�K� � h�abc
ijk j

�HH�CCSD�S�CCSD�K j�i, where S�CCSD�0 � 1

and S�CCSD�K � R�CCSD�
K for K > 0. They can be calculated

using the CCSD and EOMCCSD cluster and excitation
operators T�CCSD� and R�CCSD�

K , respectively. The �K de-
nominators are defined as

�K � h ~��KjS
�CCSD�
K exp�T�CCSD��j�i : (2)

The states j ~��Ki in Eqs. (1) and (2) represent perturbative
estimates of the CCSDT and EOMCCSDT wave func-
tions. We have j ~��0i � �PP exp�T�CCSD� � ~TT3�j�i and
j ~��Ki � �PP�R�CCSD�

K � ~RR3� exp�T
�CCSD��j�i for K > 0,

where �PP is a projection operator on the subspace spanned
by the reference j�i and singly, doubly, and triply excited
determinants. The most complete forms of ~TT3 and ~RR3

defining the CR-CCSD�T�; c approximation are [8,23]

~TT 3 �
1

36

X

ijk;abc


Mijk
abc�0�=D

abc
ijk �0��a

aabacakajai; (3)

~RR 3 �
1

36

X

ijk;abc


Mijk
abc�K�=D

abc
ijk �K��a

aabacakajai; (4)

where Dabc
ijk �K� � E�CCSD�

K � h�abc
ijk j

�HH�CCSD�j�abc
ijk i. In the

case of the ground-state calculations, we also consider
simplified variants of the CR-CCSD(T) theory, termed
132501-2
CR-CCSD�T�; a and CR-CCSD�T�; b. In the case of
CR-CCSD�T�; b, the perturbative denominator Dabc

ijk �0�

is replaced by �h�abc
ijk j

�HH�CCSD�
1 j�abc

ijk i, where �HH�CCSD�
1 is

the one-body part of �HH�CCSD�. For CR-CCSD�T�; a we
replace Dabc

ijk �0� by the standard many-body perturbation
theory (MBPT) triples denominator (�i � �j � �k �
�a � �b � �c), where �i and �a are the diagonal elements
of the Fock matrix.Very accurate results for the excitation
energies EK � E0 of many-electron systems are obtained
if we use the complete CR-CCSD�T�; c theory to calcu-
late the energies of excited states and the CR-CCSD�T�; b
approximation for the ground-state energy [23]. For the
ground states, it may sometimes be worthwhile to replace
the �0 denominator, Eq. (2), which renormalizes the
triples correction �0, by 1, since �0 equals 1 plus terms
of the second MBPTorder or higher [22]. We indicate this
by using acronyms, such as CR-CCSD�T�; c=�0 � 1 [as
opposed to CR-CCSD�T�; c, where �0 is included].

We use the Idaho-A nucleon-nucleon potential [25],
which was produced using techniques of chiral effective
field theory [26,27]. Modern two-nucleon interactions,
such as Idaho-A, include short-range repulsive cores
that require calculations in extremely large model spaces
to reach converged results [14]. In order to remove the
hard-core part of the interaction from the problem and
thereby allow for realistic calculations in manageable
model spaces, we renormalize the interactions through a
G-matrix procedure for use in the 0s-0p-0d1s-0f1p os-
cillator basis. Our Hamiltonian is thus given by H � t�
G� ~!!�, where ~!! is the G-matrix starting energy. We use a
simple procedure described in Ref. [28] to alleviate the
starting-energy dependence of the G matrix in orbitals
below the Fermi surface.We also modify the Hamiltonian
by adding to it the center-of-mass Hamiltonian times a
Lagrange multiplier �c:m:. Thus, our Hamiltonian be-
comes H0 � H � �c:m:Hc:m:. We choose �c:m: such that
the ground-state expectation value of Hc:m: � 0:0 MeV.
Details may be found in Ref. [29].

We performed coupled cluster calculations for two
closed-shell nuclei, 4He and 16O. We choose the oscillator
strength �h! to variationally minimize the CCSD energy.
Shell-model diagonalization provided an exact answer in
the 4He case. Comparing the exact ground- and excited-
state energies resulting from the diagonalization of the
Hamiltonian in the small model space with the coupled
cluster energies obtained in the same model space, we can
assess the usefulness of various coupled cluster approxi-
mations in calculations for atomic nuclei. In particular,
we can learn about the possible role of triply excited
clusters in an accurate description of ground and excited
states without confusing the inaccuracies resulting from
the inadequate treatment of the many-body problem by
a given coupled cluster approximation with other sources
of error.

We report our results for the ground-state energy of
4He in Table I. Here we use an oscillator strength of
132501-2



TABLE I. The ground-state energies of 4He calculated using
the oscillator (Osc) and Hartree-Fock (HF) basis states. Units
are MeV. The reference energies h�jH0j�i are �7:211 (Osc)
and �10:520 (HF) MeV.

Method Osc HF

CCSD �21:978 �21:385
CR-CCSD�T�; a �22:841 �22:395
CR-CCSD�T�; a=�0 � 1 �23:524 �22:711
CR-CCSD�T�; b �22:396 �22:179
CR-CCSD�T�; b=�0 � 1 �22:730 �22:428
CR-CCSD�T�; c �22:630 �22:450
CR-CCSD�T�; c=�0 � 1 �23:149 �22:783
CISD �20:175 �20:801
CISDT �22:235 –
Exact �23:484 �23:484

TABLE II. The excitation energies of 4He calculated using
the oscillator basis states (in MeV). The last column indicates
the energy expectation for the center of mass mode.

State EOMCCSD CR-CCSD(T)a CISD Exact h�c:m:Hc:m:i

J � 1 11.791 12.044 17.515 11.465 8.2
J � 0 21.203 21.489 24.969 21.569 0.8
J � 2 22.435 22.650 24.966 22.697 14.3

aThe difference of the CR-CCSC�T�; c energy of the excited
state and the CR-CCSD�T�; b energy of the ground state.
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�h! � 10 MeV, and �c:m: � 0:5. The exact diagonaliza-
tion shows that there is almost no center-of-mass con-
tamination since h�c:m:Hc:m:i 
 0:7 MeV. We used two
types of reference determinants j�i: one constructed
from the lowest-energy oscillator states and the unre-
stricted Hartree-Fock determinant. The two best methods
in the oscillator basis are CR-CCSD�T�; a=�0 � 1 and
CR-CCSD�T�; c=�0 � 1. They yield results within 40
and 300 keV of the full configuration interaction (CI)
diagonalization problem, respectively. The CR-CCSD�T�;
a–c approaches are slightly less accurate than their �0 �
1 analogs, but they have an advantage of providing upper
bounds to the energy [the �0 � 1 methods may overshoot
the exact results; cf. the CR-CCSD�T�; a=�0 � 1 energy
in Table I]. In general, the CR-CCSD(T) results are con-
siderably more accurate than the results of the CCSD
calculations, in which T3 is ignored, although the CCSD
approach describes the bulk of the correlation effects,
reducing the large 16.273 MeVerror obtained by calculat-
ing h�jHj�i with the oscillator reference j�i to 1.5 MeV.
We also compared the CCSD approach with the results of
truncated shell-model calculations (CISD), in which the
Hamiltonian is diagonalized in the space of singly and
doubly excited determinants. The costs of the CISD and
CCSD calculations are almost identical (both are n2on4u
procedures), and yet the error in the CISD energy ob-
tained in the oscillator basis is twice as large as the error
obtained with CCSD. The noniterative triples corrections
defining the CR-CCSD(T) approaches reduce these errors
to as little as 40 keV, which is a lot better than the 1.3 MeV
error in the CISDT calculations, where the Hamiltonian is
diagonalized in the much larger space of all singly, dou-
bly, and triply excited determinants. This demonstrates
the advantages of coupled cluster methods over the diag-
onalization techniques. Similar observations apply to the
Hartree-Fock basis, although the coupled cluster results
obtained with this basis are not as good as those obtained
with the oscillator basis. Our Hartree-Fock basis results
from a symmetry-breaking unrestricted calculation.
Thus, a significant part of the coupled cluster effort
132501-3
must be spent to restore the symmetry. This is reminiscent
of the molecular applications of coupled cluster theory,
where the symmetry adapted restricted Hartree-Fock
basis is often superior to the unrestricted and symmetry-
breaking Hartree-Fock references. While the oscillator
basis is superior in closed-shell nuclei, the CR-CCSD(T)
results from the Hartree-Fock basis are not unreasonable,
allowing us to contemplate using this basis in calcula-
tions for open-shell nuclei. (This would parallel the
Hartree-Fock-based coupled cluster calculations for
open-shell electronic states in chemistry.)

We used the EOMCCSD method and its CR-CCSD(T)
extension to compute excited states. To our knowledge,
this is the first time that nuclear excited states are com-
puted using coupled cluster methods. The results for 4He
are given in Table II. The low-lying J � 1 state has a
considerable center-of-mass contamination (as indicated
in the last column of Table II). The J � 0 (almost no
center-of-mass contamination) and J � 2 (significant
contamination) states calculated using EOMCCSD and
CR-CCSD(T) are in excellent agreement with the results
from the exact diagonalization. For these two states, the
EOMCCSD approach provides the relatively small, 0.3–
0.4 MeV, errors, which are further reduced by the
CR-CCSD(T) triples corrections to <0:1 MeV. Based
on the experience with the equation of motion coupled
cluster methods in chemistry [5,8,15,21,23,24], the
EOMCCSD approach works for the lowest-energy excited
states of 4He since these states are dominated by single-
particle excitations. Again, a comparison of the
EOMCCSD and CISD results shows that coupled cluster
theory offers much higher accuracies compared to trun-
cated diagonalization of similar numerical effort. This
suggests that excitations in 4He and other nuclei can be
computed with coupled cluster theory. Our results in
Table II are indicative of the accuracies we may expect
from such calculations.

We also applied the CCSD and CR-CCSD(T) methods
to 16O, using an oscillator strength of �h! � 14 MeV and
�c:m: � 1:0. Table III shows the total ground-state energy
values obtained with the CCSD and CR-CCSD(T) ap-
proaches. As in the 4He case, coupled cluster methods
recover the bulk of the correlation effects, producing the
results of the CISDTQ, or better, quality. CISDTQ stands
for the expensive shell-model diagonalization in a huge
space spanned by the reference and all singly, doubly,
132501-3



TABLE III. The ground-state energy of 16O calculated using
various coupled cluster methods and oscillator basis states. The
reference energy h�jH0j�i is �109:452 MeV.

Method Energy

CCSD �139:310
CR-CCSD�T�; a �139:465
CR-CCSD�T�; a=�0 � 1 �139:621
CR-CCSD�T�; b �139:375
CR-CCSD�T�; b=�0 � 1 �139:440
CR-CCSD�T�; c �139:391
CR-CCSD�T�; c=�0 � 1 �139:467
CISD �131:887
CISDT �135:489
CISDTQ �138:387
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triply, and quadruply excited determinants (the most ex-
pensive steps of CISDTQ scale as n4on

6
u). To understand

this result, we note that the CCSD T1 and T2 amplitudes
are similar in order of magnitude. (For an oscillator basis,
both T1 and T2 contribute to the first-order MBPT wave
function.) Thus, the T1T2 disconnected triples are large,
much larger than the T3 connected triples, and the differ-
ence between the CISDT (CI singles, doubles, and triples)
and CISD energies is mostly due to T1T2. The small T3

effects, as estimated by CR-CCSD(T), are consistent with
the CI diagonalization calculations. If the T3 corrections
were large, we would observe a significant lowering of the
CCSD energy, far below the CISDTQ result. The CISDTQ
diagonalization is not size extensive, while the CCSD and
CR-CCSD�T�=�0 � 1 methods maintain this property.
Moreover, the CCSD and CR-CCSD(T) methods bring
the non-negligible higher-than-quadruple excitations,
such as T3

1T2, T1T
2
2 , and T3

2 , which are not present in
CISDTQ. It is, therefore, quite likely that the CR-
CCSD(T) results are very close to the results of the exact
diagonalization, which cannot be performed.

In summary, we used the quantum chemistry inspired
coupled cluster approximations to calculate the ground
and excited states of the 4He and 16O nuclei. By compar-
ing coupled cluster results with the exact results obtained
by diagonalizing the Hamiltonian in the same model
space, we demonstrated that relatively inexpensive
coupled cluster approximations recover the bulk of the
nucleon correlation effects in ground- and excited-state
nuclei. These results are a strong motivation to further
develop coupled cluster methods for the nuclear many-
body problem, so that accurate ab initio calculations for
small- and medium-size nuclei become as routine as the
molecular electronic structure calculations.
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