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Explaining the effects of dark matter using modified gravitational dynamics (MOND) has for
decades been both an intriguing and controversial possibility. By insisting that the gravitational
interaction that accounts for the Newtonian force also drives cosmic expansion, one may kinematically
identify which cosmologies are compatible with MOND, without explicit reference to the underlying
theory so long as the theory obeys Birkhoff’s law. We find that the critical acceleration a, must have a
slight source-mass dependence (ay ~ M'/?) and that MOND cosmologies are naturally compatible with
observed late-time expansion history. However, cosmologies that can produce enough density pertur-
bations to account for structure formation are contrived and fine tuned. Even then, they may be
marginally ruled out by evidence of early (z ~ 20) reionization.
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That approximately 90% of the matter in the Universe
is composed of as yet unspecified material is unsettling,
especially as an increasingly coherent picture of cosmol-
ogy emerges. While there are well-motivated candidates
for dark matter, its sole purpose is to supplement the mass
in astrophysical and cosmological settings where the ac-
counting of visible matter falls short of gravitational re-
quirements. Replacing dark matter with a modified law
of gravity (as encoded in the paradigm of Modified
Newtonian Dynamics, MOND) has been for decades
both an intriguing and a controversial alternative [1,2].

The dark-matter paradigm has made many successful
contributions to the standard cosmological model. In con-
trast, MOND is largely inarticulate concerning cosmol-
ogy: it is a paradigm designed to address galaxy rotation
curves, there exists no satisfactory underlying theory, and
there is some difficulty in incorporating it into a believ-
able cosmological scenario [3-7].

In this Letter, we reexamine the possibility of folding
MOND into a cosmological model under the premise that
the same gravitational interactions that manifest them-
selves in a modified Newtonian force are also respon-
sible for cosmological evolution. In a previous paper [§]
with Scoccimarro, we showed how one may kinemati-
cally derive a unique Schwartzchild-like metric for a
modified-gravity theory from a specified homogeneous
cosmology. There too, the presumption exploited was
that cosmology is driven exclusively by gravitational self-
interactions of the constituent matter, rather than by some
unknown energy momentum such as dark energy. This
correspondence between the metric and cosmology can be
made without reference to the fundamental modified-
gravity theory, assuming only that the underlying theory
respects Birkhoff’s law. The procedure is simply the
generalization to a full metric theory of the classic deri-
vation of the Friedmann equation from the Newtonian
force law.
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We apply the same technique here to ascertain which
cosmologies are compatible with MOND, allowing us to
identify a full Schwartzchild-like metric and providing a
self-consistent framework to perform calculations of in-
terest in MOND cosmology. We begin by briefly review-
ing the prescription for the full metric consistent with
homogeneous cosmologies and then apply that prescrip-
tion to determine both the Schwartzchild-like metric and
the modified Friedmann equation of MOND. We then
examine the class of cosmologies consistent with the
MOND force law and reveal that there are potentially
insurmountable difficulties that arise when incorporating
MOND into a consistent cosmological scenario.

Let us quickly review the technique developed in
Ref. [8] where one infers the Schwarzschild metric from
an arbitrary cosmology, to see how one might apply it in
reverse and devise a cosmology consistent with Modified
Newtonian Dynamics. Consider a homogeneous cosmol-
ogy described by the line element

ds* = di* — a*(1)8;;dx'dx/, (D

with some specified scale-factor evolution, a(z). If this
universe is matter dominated [i.e., filled by homogeneous
matter of density p(¢f) ~a 3], one is faced with two
possibilities. Einstein gravity may be correct and then
cosmology is driven by some unseen additional energy-
momentum components — dark matter and dark energy.
Alternatively, the matter we see may be the only energy
momentum, but then gravitational dynamics must be
altered in a specific way to achieve the observed cosmic
expansion history, a(r). We follow the latter possibility.
It is convenient to represent the given scale factor a(z)
as the solution to some alternative Friedmann equation:

a?/a®> = Hig(x), (2)

where x = %WG,D/H% is a dimensionless parameter, G is
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Newton’s constant, and H, is today’s Hubble scale. The
function g(x) is determined by the given a(s). If one
requires that the fundamental gravitational theory re-
spects Birkhoff’s law, then one can uniquely determine
the metric of a spherically symmetric source [8]. That
metric is described by the line element

ds* = goo(r)di* — g, (r)dr* — r*dQ, 3)
with
goo(r) = g, =1 = r*H3g(r,/r*H}). 4

Here r, = 2GM is the usual Schwarzschild radius of a
matter source of mass M. Note that the form of the metric
components is completely determined by a(z), and, in
particular, that r, and r can only appear in the metric
in a specific combination. This point will be important
when we consider how to apply this connection between
cosmology and the Schwartzchild-like metric to MOND.

In MOND [1] the gravitational acceleration exerted by
a body of mass M obeys the relationship:

— ldgw — _ -2
o= { 5o GMr lal > aq, )

~— ! la] < ay,

for some critical acceleration, ay. If we insist on a form
for modified gravity which is compatible with a homoge-
neous cosmology and Birkhoff’s law, its Schwartzchild-
like metric must be of the form Egq. (4). The form for g(x)
compatible with Eq. (5) is

x + ¢ x¥3 Einstein (x > x,)
Xx) = ’ 6
g(x) {Bx2/3 Inx + c,x%3>  MOND (x < x,), ©
for some constant parameters, 3, ¢;, and ¢,, yielding
—1% lal > a
272 0
a = 2/3 (7)
_ 38 (r,Hy)
[ R £ ,f) » |a| < aO;

where the critical MOND acceleration, aq, is
ag = Ho[9B%(r,Hp)'3] 3)

Observationally, we choose B8 = 15 so that for source
masses the size of large galaxies (M ~ 10''M,), the
critical acceleration is ag = éHO, corresponding to x,. =
7 X 10*. To ensure that g(x) is continuous across the
transition at a = ay,

¢y =c; +3B[In(3B) — 1] &)

The remaining constant represents an arbitrary choice in
zero-point energy for the Newtonian potential. Although
¢y and ¢, do not affect the Newtonian acceleration, they
simulate curvature-type terms in the Friedmann equation
despite the spatially flat cosmology [see Eq. (1)]. However,
the resulting change in g,, [see Eq. (4)] causes only
immeasurably small effects on gravitational lensing and
the post-Newtonian parameter, y.

The form Eq. (7) for the MOND gravitational accel-
eration is slightly different than that typically considered,
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where ay, = H,/6 is a universal constant. Compatibility
with a homogeneous cosmology compels us to give ag a
weak dependence on the source mass, ay ~ M'/3. This
dependence is not a serious amendment to the MOND
paradigm; indeed a well-motivated mass dependence may
actually benefit the modified-gravity scenario. Galaxy
clusters appear to stray from the original MOND parame-
trization [2], such that uncomfortably large light-to-mass
ratios are necessary to bring objects of mass scales
O(10"M,) into accord with MOND. In our prescription,
Eq. (7), objects more massive than galaxies would exhibit
effective dark-matter halos somewhat heavier than those
predicted by traditional MOND, consistent with what
seems to be required by observations.

Let us summarize. By requiring that the underlying
fundamental gravity theory that provides MOND is
compatible with both homogeneous cosmologies and
Birkhoff’s law, we may construct the function g(x) found
in Eq. (6). This determines both the modified Friedmann
equation, Eq. (2), and the full Schwartzchild-like metric
of a spherical mass source, Eq. (4), avoiding explicit
reference to the details of the fundamental theory. With
these two governing relationships, we may now articulate
a whole host of important properties of cosmological
interest. For example, we may compute modifications of
planetary ephemeris, gravitational lensing, growth of
density perturbations (both linear and nonlinear), and
the late-time integrated Sachs—Wolfe (ISW) effect on
the cosmic microwave background. Details of these cal-
culations for arbitrary g(x) are given in Ref. [8]. Here we
focus particularly on accommodating late-time accelera-
tion into MOND, and on the growth of fluctuations.

Beginning with a function g(x) given by Eq. (6) and
consistent with MOND Newtonian accelerations, Eq. (7),
one can articulate a MOND cosmology. The quantity x
that appears in the modified Friedmann equation, Eq. (2),
may be interpreted as (),(f) assuming that the matter
content in the Universe is dominated by baryons. (At
earlier times one would require some MOND description
of the self-gravity of radiation.) One can then immedi-
ately associate x with a redshift using the relationship
x=(1+23QP". Let us investigate the cosmology in
stages, beginning with the Einstein, large-x, stage.

The transition from Einstein to MOND takes place in
galaxies at x~7 X 10*, or correspondingly, taking
QY% = 0,04 [9], cosmologically at a redshift z ~ 120.
Thus, cosmology at redshifts z = 120 follows the ordi-
nary Friedmann equation. But if the matter content of the
Universe is solely baryonic, then matter—radiation equal-
ity occurs at z ~ 600. Recombination still occurs at z ~
1100, before instead of after radiation-matter equality as
in conventional dark-matter cosmology. This observation
corroborates prior work regarding how MOND affects
the cosmic microwave background (CMB) [10,11]. The
acoustic oscillations that appear in the CMB anisotropy
must be driven in an almost purely baryonic scenario.
This prior work claims that MOND not only survives this
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drastic discrepancy from the standard cosmological
model, but that some ratios of CMB peak heights indeed
favor MOND. Since our prescription applies strictly only
during the matter-dominated epoch, it has nothing to
contribute to the understanding of MOND physics at the
epoch of last scattering, although it can be used to make
predictions about the late-time integrated Sachs—Wolfe
(ISW) effect.

Looking at the form of Eq. (6), it is clear one cannot
extend MOND force law to arbitrarily small x, or density.
Eventually, the Hubble parameter, H = a/a vanishes and
the Universe recollapses, regardless of the choice one
makes for c,. The result is intuitive if one imagines
cosmology as evolving classically on the Newtonian po-
tential at some fixed energy dictated by c,. The scale
factor, a, is proportional to the position of a test particle
on that potential. The MOND part of the potential is
logarithmic, implying that every comoving trajectory
eventually has a turning point for any choice of initial
energy (i.e., choice of c,).

Thus, there must be a sufficiently small x where MOND
behavior ceases to predominate. We are guided here by the
data which teach us that: (i) Our Hubble expansion rate
is currently H = H, =~ 70km/s. (A value 20% or 30%
smaller than this would not change these arguments
materially.) (ii) We are currently undergoing acceleration
in our cosmic expansion [12,13] with é/a ~ H}. (iii) The
expansion before z ~ 1.7 was decelerating [14].

We can accommodate these considerations by modify-
ing g(x) of Eq. (6) in the following way:

x +3Bx23[m@BB) — 1], x= (BB,
Bx*3[In(1 + x)], 0.1 <x= @3B
QA’ x=0.1,

glx) =

(10)

where g(x) = Q, = 0.7 is equivalent to a cosmological
constant. Figure 1 shows these different regimes and a
possible smooth interpolation. It is interesting that such a
simple modification may be accommodated. If 8 were an
order-of-magnitude larger or smaller, one could not ex-
tend the MOND regime all the way to the deceleration-
acceleration transition and still be able to maintain both
H ~ H, as well as d/a ~ H}.

Equations (2) and (10) represent the full modified
Friedmann equation from matter-radiation equality to
the present time, including the onset of today’s cosmic
acceleration. We may now proceed to compute the growth
of linear perturbations in this cosmology. Such a compu-
tation is important because we require sufficient density
perturbation growth to seed the observed structure in the
Universe. The evolution of linear density perturbations
for the class of theories under consideration takes a
simple closed form. Take a uniform overdensity in a
localized spherical region such that

p() = p(O[1 + 6(1)], (1)
131102-3
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FIG. 1 (color online). The function g(x) versus 1 + z where
x=(01+ z)3Q§]°day. The dotted line is g(x) = x, the asymptotic
Einstein behavior at high redshifts. The dashed line is g(x) =
Q, + 6x, which reproduces the late-time expansion history of
a standard dark-matter model. The interpolating x%3 In(1 + x)
dependence is the MOND regime.

where p is the background matter density that follows
cosmological evolution. Parametrizing time evolution us-
ing x = 87Gp/3H3, the growing perturbation mode &(x)
goes as [8] (see also [15]):

5A 0 d
5(x) = ?81/2(35)[( Wz/z(y), (12)

where A is an overall normalization. Because matter is
predominantly baryons, the normalization is fixed by
requiring that perturbations are restricted to be & ~
few X 1073 at recombination. Figure 2 depicts the evolu-
tion of 6(x) for a smooth interpolation of Eq. (10).

In pure matter-domination for Einstein Friedmann-
Robertson-Walker (FRW), 8§ = Ax~!/3, or in other words,
& grows like the scale factor a(). Even if growth were as

FIG. 2 (color online). Baryon density perturbation, &(x) ver-
sus 1 +z for g(x) as in Fig 1, normalized to the CMB
anisotropy amplitude at recombination. The dotted line repre-
sents the growth in 8(x) if it were to follow Einstein gravity.
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large as this, given the normalization required at recom-
bination, the growth of density perturbations would be
insufficient to account for the observed structure forma-
tion. Moreover, in each of the three regimes in Eq. (10),
growth is slower than that given benchmark, § < a(z). In
the early Einstein phase and during the MOND phase,
scale-factor evolution looks as if it were curvature domi-
nated. Growth must take place before the end of the
MOND phase.

It may seem counterintuitive that growth is suppressed
during the MOND regime, given that the self-gravitation
of overdensities is enhanced. But the same stronger grav-
ity also drives a faster cosmology, which in turn sup-
presses perturbation growth. Ultimately, this latter effect
wins out. This poses a significant difficulty for cosmo-
logical incarnations of MOND.

There is a way to avoid this difficulty, but a specially
tailored force law is required. Galaxy rotation curves only
require that MOND be valid up to radii r ~ 70 kpc for
galaxy masses M ~ 10''M [16,17]. This distance and
mass scale corresponds to x ~ 600 or, in MOND cosmol-
ogy, to a redshift z ~25. If a recent observation of a
Gunn—-Peterson trough [18] signals that galaxies formed
near z ~ 6 (or x ~ 14), then there is a narrow window in
x, between 14 and 600, where little is known observation-
ally and where one can carefully manipulate g(x) to
achieve sufficient growth in density perturbations to
create galaxies, yet maintain the MOND paradigm.

To achieve the required growth, somewhere in this
range of x, the function g(x) must dip very close to zero
and then rise again above O(1) to accommodate super-
nova type IA (SNIA) constraints on contemporary ex-
pansion history. From Eq. (12) one sees that near a
minimum where g(x) = g(xo) + 5 g (x0)(x — xo)?

8 ~ Axy Plg(x)g" (xo)] "2 (13)

When g(x,) is close to zero, arbitrarily large growth in
8(x) can occur. The cosmology in this regime loiters, the
expansion almost stops and near this critical unstable
point in the potential, small variations in density amplify.
For a M ~ 10" M, source-mass, this fine-tuned dip in
g(x) corresponds to Newtonian gravity becoming repul-
sive in a region r ~ 70 — 300 kpc to generate the large
perturbations and then becoming attractive again before
r ~ 600 kpc to account for today’s cosmology.

But even this possible resolution is a tenuous one.
Wilkinson Microwave Anisotropy Probe (WMAP) obser-
vations of the CMB suggests that reionization starts as
early as z = 20710 [9], and that growth in perturbations
must occur before that redshift. The window for a possible
excursion in g(x) then becomes exceedingly small, cast-
ing doubt that a MOND cosmology can viably create the
Universe we see today.

In this Letter, we provided a self-consistent framework
where we could assess which cosmologies were compat-
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ible with Modified Newtonian Dynamics (MOND), ex-
ploiting techniques developed in prior work [8]. We found
that in order for MOND to exhibit homogeneous cos-
mologies, the critical MOND acceleration a, must have
a slight source-mass dependence (a, ~ M'/3).

With that mild amendment, we found that MOND
cosmologies are naturally compatible with observed
late-time expansion histories and cosmic acceleration.
However, those natural cosmologies cannot produce
enough growth of density perturbations to account for
structure formation. One may circumvent this difficulty
by envisioning a loitering phase, arising from a drastic
weakening of gravity at a selected value of x, chosen to
correspond to part of redshift history where little is
known (z ~ 6 — 25). These cosmologies are contrived
and fine tuned, and may even be marginally ruled out
by evidence of early (z ~ 20) reionization. Such machina-
tions cast doubt on the possibility that MOND cosmology
led to the Universe we observe today.
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