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Generic Cosmic-Censorship Violation in anti–de Sitter Space
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We consider (four-dimensional) gravity coupled to a scalar field with potential V���. The potential
satisfies the positive energy theorem for solutions that asymptotically tend to a negative local minimum.
We show that for a large class of such potentials, there is an open set of smooth initial data that evolve to
naked singularities. Hence cosmic censorship does not hold for certain reasonable matter theories in
asymptotically anti–de Sitter spacetimes. The asymptotically flat case is more subtle. We suspect that
potentials with a local Minkowski minimum may similarly lead to violations of cosmic censorship in
asymptotically flat spacetimes, but we do not have definite results.
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FIG. 1. A potential V��� that satisfies the positive energy

the barrier separating the extrema is high enough, but it
does not hold if the barrier is too low [8]. By adjusting the

theorem for solutions that asymptotically approach the local
(AdS) minimum at �1, but which violates cosmic censorship.
Perhaps the most important open problem in classical
general relativity is to prove (or find a counterexample to)
Penrose’s cosmic censorship hypothesis [1]. This states
that physically reasonable initial data cannot produce
naked singularities, i.e., singularities that are visible to
distant observers. Despite the fact that our current theory
of black holes is heavily based on this hypothesis, there is
rather little direct evidence that it is true.

We show that (weak) cosmic censorship can be violated
rather easily when gravity is coupled to a scalar field in
asymptotically anti–de Sitter (AdS) spacetimes. While it
is known that naked singularities can be produced with
pressureless matter (see, e.g., [2]) or fine tuned initial
conditions [3], this is one of the first examples of a generic
violation of cosmic censorship for ‘‘reasonable’’ matter
(see [4] for an asymptotically de Sitter example). In
addition to restricting the nature of a possible cosmic
censorship theorem applicable to our universe, this result
may be of interest in string theory. It has been argued that
string theory with AdS boundary conditions is com-
pletely described by a conformal field theory [5]. While
we have not attempted to derive our action from string
theory, if naked singularities also arose in that case, one
could probably use the dual field theory description to see
how they are resolved in a quantum theory of gravity.

We consider four-dimensional gravity, coupled to a
single scalar field with a potential V���. We take V to
have a global minimum at � � 0 and a local minimum at
� � �1 > 0 (see Fig. 1). We assume V�0� � �3V0 and
V��1� � �3V1 are both negative, and we consider solu-
tions that asymptotically approach the local (AdS) mini-
mum at �1. We require that V satisfies the positive energy
theorem (PET) for solutions with this boundary condition.
While some formulations of this theorem assume a local
energy condition stating that V is never less than its
asymptotic value, it has been shown that this is not
necessary [6,7]. Generally speaking, the PET holds if
0031-9007=04=92(13)=131101(4)$22.50 
height of the barrier to be close to the transition point,
one decreases the mass of nontrivial configurations that
probe the region of V around the true minimum. We show
that although the positive energy theorem holds in such
theories, cosmic censorship does not. We demonstrate this
by first constructing initial data with a large approxi-
mately homogeneous region in the interior where V <
�3V1, but with � ! �1 asymptotically. The central re-
gion evolves to a singularity, since a homogeneous scalar
field rolling down a potential to a negative minimum
generically becomes singular. We then show that if the
barrier is close to the transition point, the total mass is too
small to produce a black hole large enough to enclose the
entire singular region, so the singularity must be naked.

This violation of cosmic censorship in AdS is quite
general since for a large class of potentials, one has to
adjust only one parameter. Even though the naked singu-
larity in black hole critical phenomena [3] also arises
from adjusting one parameter, the implication here is
completely different. This is because we are adjusting a
parameter in the potential, not the initial data. For a given
2004 The American Physical Society 131101-1
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theory, there is an open set of initial data that produce
naked singularities. Furthermore, in our case one does
not even have to fix the parameter exactly; it only has to
be close to some critical value.

It may also be possible to violate cosmic censorship for
asymptotically flat initial data, using potentials of the
above form with the local minimum at V � 0. However,
it is much easier in the asymptotically AdS case. This is
because a large black hole of radius Rs in AdS requires a
mass MBH � �R3

s � Rs�=2 (where we have set the AdS
radius to one). This is much larger than the mass of a
Schwarzschild black hole of size Rs. For this reason, the
asymptotically flat case is much more delicate.We discuss
it at the end, but do not come to a definite conclusion. We
see that this can be explored with �1� 1�-dimensional
numerical relativity and hence provides a feasible new
test of cosmic censorship.

To begin, we find the precise condition for potentials of
the above type to admit a PET. To minimize the mass, we
consider initial data with all time derivatives set to zero.
For time symmetric initial data the constraint equations
reduce to

�3�R � gij�;i�;j � 2V���; (1)

where we set 8G � 1. Since spatial gradients raise the
energy, we first restrict attention to spherically symmetric
configurations with metric

ds2 �
�
1�

m�r�
4r

�
�1
dr2 � r2d	2

2: (2)

The constraint then yields the following equation for the
‘‘mass’’ m as a function of the radius:

m;r �
1

2
mr��;r�

2 � 4r2
�
V��� �

1

2
��;r�

2

�
: (3)

The general solution for arbitrary ��r� is

m�r� � 4
Z r

0
e�

R
r

~rr
r̂r��;r�

2=2 dr̂r
�
V��� �

1

2
��;r�

2

�
~rr2 d~rr:

(4)
The total Arnowitt-Deser-Misner (ADM) mass is defined
to be
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M � lim
r!1

�m�r� � 4V1r3	: (5)

We require that � ! �1 faster than 1=r3=2 since this is
required for finite mass. In fact, it suffices to consider
configurations where ��r� reaches �1 at a (possibly large)
finite radius r � R1, and in this case M � m�R1� �
4V1R

3
1. This is because one can always perturb �

to have finite R1, keeping the change in the mass arbi-
trarily small.

To identify the criterion on V for the PET to hold, we
first minimize

mV � 4
Z R1

0
e�

R
R1
r
r̂r��;r�

2=2 dr̂rV���r2 dr (6)

over a suitable class of �. Introducing a new radial
variable y � r=R1 and writing ~���y� � ��R1y�, it is easy
to see that mV=R

3
1 is independent of R1. Let S be the set of

all ~���y� with ~���0� � �0 
 0, V��0�<�3V1, and
~���1� � �1. The boundary condition at the origin is
chosen so that if V admits any negative energy configu-
rations, then it admits some in S. We define

�V � min
~��2S

mV

4R3
1

� min
~��2S

Z 1

0
e
�
R

1

y
dŷy ŷy ~��02=2

Vy2 dy; (7)

where ~��0 � ~��;y. The minimum clearly exists since the
integral is bounded below by �V0. Clearly �V is a con-
tinuous function of V, and R1 is now a free parameter that
acts like an overall scale. If �V <�V1 then the PET does
not hold, since the contribution to the mass from the
��;r�

2 term is proportional to R1 while the contribution
from V is proportional to R3

1. So for large R1, the mass is
negative. However, if �V 
 �V1, then the PET holds
since this minimal configuration has positive mass.
[When the PET holds, the true minimal configuration
has zero mass and corresponds to ��r� � �1 for all r.
Our minimal configuration has positive mass, since it is
required to have V���0��<�3V1.]

To compute �V for a given theory we take the variation
�� of the integral (7) to find the lowest mass configura-
tion subject to the boundary conditions discussed above.
This yields the following integro-differential equation
for the ‘‘optimal’’ paths ~���y�,
Z �yy

0
dy y2V� ~���e

�
R

1

y
dŷy ŷy ~��02=2

� �
e
�
R

1

�yy
dŷy ŷy ~��02=2

� �yy2V; ~�� � �yy3 ~��0V� ~���	

�yy ~��00 � ~��0
; (8)
where all derivatives on the right hand side are evaluated
at �yy. Notice that the left hand side is precisely
mV� �yy�=4R

3
1, so Eq. (8) expresses the density �V of the

optimal paths in terms of field derivatives at y � 1.
Subtracting the cosmological constant term �V1 gives

�V � V1 �
V1�4 ~��

0 � ~��00�

~��0 � ~��00
; (9)

which yields yet another way to state the precise con-
dition for the PET to hold: for the potential V at the
transition point, the lowest mass configuration within
the class S has ~��00 � �4 ~��0.

To give a concrete example, we numerically solve
Eq. (8) and compute �V for the following one-parameter
family of potentials (shown in Fig. 1 for � � 45:9),

V��� � �3� 50�2 � 81�3 � ��6: (10)

We have chosen the parameter � to control the height of
the barrier between both extrema. For � � 45:927 we
have �V � �V1. For this potential, V0 � 1, V1 � 0:305,
131101-2
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FIG. 2. The lowest mass configuration ~���y�, subject to the
boundary conditions discussed in the text, for the potential
shown in Fig. 1.
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and �1 � 0:725. The solution for the optimal path in the
theory at the transition point is shown in Fig. 2. The
solution starts at the global minimum at the origin
y � 0, climbs very slowly out the true vacuum, and
reaches the false vacuum at y � 1.

At the transition point, �V � V1 � 0, the potential
contribution to the mass vanishes. In terms of the area
coordinate r � yR1, the total ADM mass of the minimal
configuration ��r� is then given by

M � 2
Z R1

0
e�

R
R1
r
r̂r��;r�

2=2 dr̂r��;r�
2r2 dr / R1: (11)

We now show that this lowest mass configuration
evolves to form naked singularities. In the central region,
the field ~���y� changes slowly. Take y � y0 to be the radius
where m�y0� deviates by 1% from its value in pure AdS,
with � � �3V0 (in our example, y0 � 0:58). For large
R1, this corresponds to a proper radial distance

L �
Z y0R1

0

dr

�1� �V0r2�	1=2
� V�1=2

0 lnR1: (12)

Hence, there is a large region of approximately constant
density, and we can model the evolution inside its domain
of dependence by a k � �1 Robertson-Walker universe:
ds2 � �dt2 � a2�t�d�2 (where d�2 is the metric on the
unit hyperboloid). The field equations are

�aa
a
�

1

3
�V��� � _��2	; (13)

����
3 _aa
a

_��� V;� � 0; (14)

and the constraint equation is

_aa 2 �
a2

3

�
1

2
_��2 � V���

�
� 1: (15)

If the scalar field was exactly at the minimum of the
potential, it would remain constant, and the solution
would be AdS with a�t� / cos

������
V0

p
t. In this case, a � 0
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is just a coordinate singularity. The fact that the scalar
field starts slightly above the minimum has a dramatic
consequence. Now� starts to roll down the potential, and
when a ! 0, this results in a curvature singularity as we
now show.

Near the minimum of the potential, V � �3V0 �
m2�2=2. We start with � � �, so initially we have
��t� � � cosmt and a�t� � V�1=2

0 cos
������
V0

p
t. Define E �

_��2=2�m2�2=2. Then from (14), _EE � _��� ����m2�� �
�3� _aa=a� _��2. Since m �

������
V0

p
, � oscillates many times

before a changes. Averaging over one period yields h _EEi �
�3� _aa=a�hEi, which implies hEia3 remains constant. (This
could also be seen from the fact that the pressure p �
_��2=2�m2�2=2 averages to zero.) Putting in the initial

value of E yields hEi � �2m2=2a3. Substituting into the
constraint (15) yields

_aa 2 � V0a
2 �

�2m2

6a
� 1: (16)

This shows that when �2m2=a� 1, a�t� changes from
cos

������
V0

p
t to a�t� / �Ts � t�2=3. Near t � Ts, it follows

from (14) that � diverges, producing a curvature singu-
larity, and a�t� changes to a�t� / �Ts � t�1=3. Since this
homogeneous evolution produces trapped surfaces, the
slightly inhomogeneous collapse of our central region
also produces singularities.

If this singularity lies inside a black hole, then we can
trace the null geodesic generators of the event horizon
back to the initial surface, where they form a sphere of
radius Rs. The area theorem for black holes requires only
the null convergence condition and hence still holds even
in theories with V���< 0. Since the area of the event
horizon cannot decrease during evolution and the mass
cannot increase, the initial mass M must be large enough
to support a static black hole of size Rs. Since a large
Schwarzschild AdS black hole requires a mass MBH / R3

s
and the initial data have only mass M / R1, this is clearly
impossible if Rs / R1, which we will soon establish.
Potentials of the type we are considering may admit black
hole solutions with scalar hair [9], but they also have a
mass that grows like R3

s if the PET holds, so they cannot
be produced in the evolution.

To compute Rs, define 2l to be the proper distance on
the initial surface between the boundary of the homoge-
neous region at r � y0R1 and an inner radius (Rs) such
that an outgoing radial null geodesic from the inner radius
meets an ingoing radial null geodesic from r � y0R1 at
the singularity. From the Robertson-Walker form of the
metric, l � a�0�

RTs
0 dt=a�t�. From the above analysis, l

depends on y0 through �, but is independent of R1. (In our
example, l � 2:4 and Ts � 1:3.) The proper radial dis-
tance on large scales is proportional to lnr, so Rs �
y0R1e�2l. Since l is independent of R1, this shows that
Rs indeed scales linearly with R1. The mass grows line-
arly with R1, but the black hole of this size requires a
mass that grows like R3

1. Clearly, for large R1 there is not
131101-3
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enough mass to form a black hole that encloses the
singular region.

Inside the domain of dependence of the central region
of radius y0R1, the singularity is spacelike, like a big
crunch. The singularity is likely to extend somewhat
outside the domain of dependence (so our estimate for
Rs is really a lower limit), but not reach infinity. The end
point of the singularity is thus naked. If the singularity
did reach infinity, it would cut off all space, producing a
disaster much worse than naked singularities. But this is
unlikely since there would then be a radius Rc on the
initial surface such that the outgoing null surfaces for r >
Rc expand indefinitely and reach infinity, while those
with r < Rc hit the singularity and (probably) contract
to a point. This indicates that the surface with r � Rc
would reach a finite radius asymptotically, just like the
stationary horizons that are ruled out.

So far we have discussed just one particular initial data
set and argued that it evolves to a naked singularity.
However, since the difference between the available
mass and the mass required to enclose the singularity
inside a black hole is very large, it is clear that small
perturbations in the geometry or adding small initial time
derivatives will not change our conclusion. The evolution
will still produce a naked singularity.

For this reason, our construction leads to generic vio-
lations of cosmic censorship. Moreover, it is not necessary
to tune the potential exactly. Once one has a theory with
configurations that produce naked singularities for some
R1, one can raise the height of the barrier slightly (in-
creasing the mass by "R3

1) and still not have enough mass
to form a black hole.

It is natural to ask if the same type of potential with a
local minimum at V��1� � 0 will lead to violations of
cosmic censorship for asymptotically flat spacetimes.
This is possible since one can still satisfy the positive
energy theorem even when the potential has a negative
global minimum, and an (approximately) homogeneous
scalar field rolling down the potential to a negative mini-
mum again produces a singularity. However, this question
is more difficult to answer since a large Schwarzschild
black hole requires only a mass proportional to its radius.
Thus, even after adjusting the height of the potential to
cancel the R3

1 contributions to the mass, one may still have
enough mass to enclose the singularity in a black hole
of size Rs.

Nevertheless, we believe the singularity may be naked
also in this case, for the following reason. Our minimal
configuration can be viewed as a region of negative en-
ergy proportional to �R3

1 surrounded by a shell of posi-
tive energy proportional to �R3

1, leaving the ADM energy
proportional to R1. Since the initial data are time sym-
metric, one expects some of the energy in the shell to
radiate to infinity. However, even if only a small fraction
of the energy in the shell is radiated away, the Bondi mass
becomes negative. (This is not an issue in the asymptoti-
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cally AdS case if one uses reflecting boundary conditions
as required by string theory.) To ensure positivity of the
Bondi energy, one can increase the height of the barrier.
By continuity, there must be a point where the final Bondi
mass remains positive but small. We suspect that there are
potentials for which the final Bondi mass of the minimal
configurations is too small to produce a black hole sur-
rounding the singular region, leading to violations of
cosmic censorship for asymptotically flat spacetimes.
One clearly needs to study the full evolution to explore
this possibility, but since one can test this with spheri-
cally symmetric configurations, this should be an easy
problem for numerical relativity.

One might argue that any matter theory that does not
satisfy the dominant energy condition is unphysical.
However, this seems unreasonable in light of the fact
that a large class of supersymmetric compactifications
M4 � K contain four-dimensional potentials that become
negative [10]. It would be very interesting to see if initial
data similar to what we have studied here evolve to naked
singularities in some supersymmetric compactifications.

The fact that cosmic censorship may not hold in our
universe could be viewed as a desirable feature. If singu-
larities can be visible, one has the possibility to vastly
extend the range over which general relativity could be
tested experimentally, and to directly observe effects of
quantum gravity associated with high curvature.
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