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Statistically Locked-In Transport through Periodic Potential Landscapes
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Classical particles driven through periodically modulated potential energy landscapes are predicted
to follow a devil’s staircase hierarchy of commensurate trajectories depending on the orientation of the
driving force. Recent experiments on colloidal spheres flowing through arrays of optical traps do indeed
reveal such a hierarchy, but not with the predicted structure. The microscopic trajectories, moreover,
appear to be random, with commensurability emerging only in a statistical sense. We introduce an
idealized model for periodically modulated transport in the presence of randomness that captures both
the structure and statistics of such statistically locked-in states.
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FIG. 1 (color). Schematic diagram of kinetically locked-in
transport through a finite domain. Potential wells of radius a
are arranged on a square grid of lattice constant b. An applied
force drives objects through the array at angle �, but, because
of their interactions with the wells, the particles are most likely
to follow a commensurate direction  ��� through the array.
Deflection by thermal forces or quenched random scattering
crete spectrum of travel directions selected by biased
random walkers. While our discussion is directed toward

centers causes the trajectories to deviate from commensurabil-
ity, which is recovered only in a statistical sense.
Objects driven through periodic potential energy sur-
faces face a myriad of choices: either they follow the
driving force or they become entrained along any of the
commensurate directions through the landscape. Variants
of this problem appear in areas as diverse as driven
charge density waves [1], electronic energy states in
two- dimensional electron gases [2], atom migration on
crystal surfaces [3], chemical kinetics, and flux flow in
type-II superconductors [4]. Quite recently, this problem
was investigated [5] using a monolayer of colloidal
spheres in flowing water as a model system and a square
array of holographic optical tweezers [6] to provide the
periodic potential energy surface. Depending on the ar-
ray’s orientation with respect to the driving force, the
spheres were observed to trace out a devil’s staircase
hierarchy of commensurate directions through the array,
with particular directions being preferentially selected
over certain ranges of orientations [5]. Trajectories de-
flected by a preference for commensurability are said to
be kinetically locked in to the lattice.

This anticipated result [7] was accompanied by two
surprises. In the first place, not all kinetically locked-in
states were centered on simple commensurate directions.
Still more surprisingly, particles’ microscopic trajecto-
ries in high-order locked-in states did not consist of se-
quences of commensurate jumps, but rather consisted of
seemingly random lower-order hops whose combinations,
nonetheless, were commensurate. The appearance of sta-
tistical rather than deterministic commensurability sug-
gests an unexpected role for randomizing processes in
structuring transport through periodic potentials and has
been dubbed a statistical lock-in [5].

This Letter presents an idealized model for statisti-
cally locked-in transport through mesoscopic potential
energy landscapes that accounts for the emergence of
combination jumps and their statistical commensurabil-
ity. In particular this model reveals how the potential
energy landscape’s structure and extent establish the dis-
0031-9007=04=92(13)=130602(4)$22.50
the purely classical behavior of flowing colloids, similar
results should emerge for biased quantum mechanical
hopping through arrays of potential wells or barriers.
Finally, we argue that the kinetically locked-in state
selected at a given orientation can depend sensitively on
particle size. Statistical lock-in therefore presents oppor-
tunities for continuously sorting heterogeneous materials
into multiple fractions simultaneously.

We first consider an array of optical traps, as shown in
Fig. 1. The centers of the traps form a square lattice with
lattice constant b. The array is taken to extend indefi-
nitely in the y direction, while its extent in the x direction
is N lattice constants. Rather than attempting to account
 2004 The American Physical Society 130602-1
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FIG. 2. Direction of deterministically locked-in transport,
tan , as a function of driving direction tan�. Results shown
are for an array with trap density 
 � a=b � 0:15.
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for the detailed structure of a particular trap array, we
instead focus on the simplest model that captures the
experimental phenomenology. For this reason, we model
the traps as circular regions of radius a < b=2 centered on
grid points. Once a particle enters a trap’s domain, it is
translated directly to the center. A particle passing out-
side the circle is assumed to be unaffected. A ‘‘trapped’’
particle eventually escapes and is carried along by the
driving force to its next encounter. This is consistent with
the observed dynamics of colloidal particles flowing
through holographic optical trap arrays [5].

In such a situation there are two distinct regimes we
consider. The first is the ‘‘ballistic’’ regime where most
particles pass through the lattice without encountering
traps. This corresponds to the limit of small trap density,

 � a=b. For sufficiently large values of 
, traps are
packed closely enough together that particles’ trajectories
consist mostly of jumps from one trap to another. This we
term the ‘‘lattice gas’’ regime. We shall first derive the
condition on 
 for being in the lattice gas regime and
consider only this regime for the rest of the discussion.
Consider the array as shown in Fig. 1. The shortest
distance, s, between a line of slopem drawn from a lattice
point on the array’s left edge and a generic point �p; q� on
the lattice is

s �
bjq� pmj

�1�m2�1=2
; (1)

with p 2 f1; . . . ; Ng and q 2 Z. If the largest possible
value of s is smaller than the trap radius a then all straight
line trajectories originating at a lattice point on the left
side will necessarily intersect a trap’s region of influence.
Now the least upper bound on the minimum value of
jq� pmj can be shown to be 1=�N � 1� [8]. Using the
smallest allowed value ofm, which is the slope of the line
through the origin and tangent to the circle centered at
(1,0), we estimate for an upper bound

s 

1

N � 1
�b2 � a2�1=2: (2)

Thus a sufficient (and necessary) condition that any
straight line trajectory starting at the origin must inter-
sect a trap before exiting the lattice is s 
 a, or


 >
1����������������������������

�N � 1�2 � 1
p : (3)

We will assume that this condition is satisfied and that
every trajectory involves a sequence of intertrap jumps.

Every trajectory through an array satisfying Eq. (3)
can be decomposed into a discrete sequence of steps from
one lattice point to another, followed by exit from the trap
array. For simplicity we treat the exit also as a step
described by the lattice vector to the trap that would
have captured the exiting particle had the trap array
extended further in the x direction.

In the physical system [5], colloidal particles are
driven through an array of optical traps by a steady fluid
130602-2
flow oriented at angle � to the trap array’s [10] axis. These
particles are also subject to random thermal forces caus-
ing them to diffuse. We will first consider the case where
there is no diffusion. In the absence of traps, the particles
then would travel in straight lines in the � direction.
Within the trap array, however, a particle’s displacement
in each step is determined by the position of the center of
the next trap it encounters along its straight line trajec-
tory. Thus, even in the absence of diffusion, the effective
direction of motion can differ from the direction dictated
by the flow. The effective direction of motion will be
described by an angle  given by tan � ‘y=‘x where ~‘‘ �
�‘x; ‘y� is the lattice vector describing the step. The func-
tional dependence of  on the flow direction, �, is given
by tan � q=p, where �p; q� are the smallest lattice in-
dices satisfying

jq� p tan�j 
 
�1� tan�2�1=2: (4)

Figure 2 shows the result.
Corresponding to a given value of � there exists a

unique value of  and hence a lattice vector, ~‘‘, describing
that step. In general, a trajectory T consists of a sequence
of steps, T � f ~‘‘1; ~‘‘2; . . . ; ~‘‘ng, where ~‘‘i is a lattice vector
describing the ith step of an n-step trajectory. Here ~‘‘i �
�‘ix; ‘iy�, with ‘ix 2 f1; . . . ; Ng and ‘iy 2 Z, such thatP
n
i�1 ‘

i
x � N and

P
n�1
i�1 ‘

i
x < N. These conditions ensure

that we do not count multiples of lattice vectors as distinct
and that each trajectory terminates at the right side of the
trap array. We can now define a mean effective direction,
 , for the entire trajectory by

tan �T� �

P
n
i�1 ‘

i
yP

n
i�1 ‘

i
x
: (5)

This value characterizes the particles’ overall trans-
port through the array, and would be reflected in mea-
surements of bulk transport properties, such as a Hall
voltage in the case of a periodically modulated two-
dimensional electron gas [2]. Without diffusion or some
other randomizing process, all the steps in every
130602-2
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FIG. 3 (color). Statistically locked-in transport through an
N � 9 lattice with 
 � 0:26 and �� � 0:09 rad (circles), com-
pared with deterministic transport (lines) and with experimen-
tal data from Fig. 3 of Ref. [5] (squares). Data for statistically
locked-in transport are offset by 0.5, and experimental data are
offset by 1 for clarity.
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trajectory would be identical, with  �  for any orien-
tation �.

We now consider the case in which diffusion or scatter-
ing randomizes the particles’ trajectories. The natural
assumption is that randomness would smear out the
noise-free transport characteristic in Fig. 2, until, on
average, the trajectories simply follow the driving direc-
tion,  � �. In fact, a far more interesting behavior
results.

We model trajectory fluctuations by assuming that a
particle leaving a trap is equally likely to travel along any
direction in a wedge of opening angle 2�� centered on
the flow direction. In terms of experimental parame-
ters for colloidal transport, �� depends on the tempera-
ture and the particles’ mobility. The path a particle takes
through the array is no longer deterministic, and there are
many possible trajectories for any given driving direction.

We first compute the probability of a step being a lattice
vector ~‘‘ � �‘x; ‘y�. This probability corresponds to the
fraction of angles in the range 
�� ��; �� ��� whose
effective direction  corresponds to lattice vector ~‘‘:

P‘� ~‘‘� �
1

2��

Z ����

����
��‘y=‘x�;tan ��0�d�

0; (6)

where �j;k is the Kronecker delta function. If the con-
dition in Eq. (3) is satisfied then there will only be a finite
number of lattice vectors with nonzero probability as
defined above, and the sum of the probabilities will be
unity. Consequently there is only a finite number of pos-
sible trajectories consisting of sequences of these lattice
vectors. Let there beM distinct possible trajectories given
by the set fTig. Here Ti � f ~‘‘1; ~‘‘2; . . . ; ~‘‘nig, where ni is the
number of steps in trajectory i. The probability for a
particle to take a particular trajectory Ti is

PT�Ti� �

Qni
j�1 P‘�

~‘‘j�P
M
i�1

Qni
j�1 P‘�

~‘‘j�
: (7)

The probability that the particle’s trajectory will carry it
in direction  0 is then given by

P� 0� �
XM
i�1

PT�Ti��tan 0;tan �Ti�
: (8)

This distribution includes only a few discrete directions
and thus is better characterized by its most probable
value,  �, with P� �� � P� � 8  , rather than its mean.

Figure 3 shows the results for an N � 9 lattice with

 � 0:26 when the dispersal angle �� that models disor-
der is increased from the deterministic limit, �� � 0 to
�� � 0:09. These values were selected to mimic the
experimental conditions in Ref. [5]. Data from that study
are plotted as squares in Fig. 3 for comparison. The
calculated results demonstrate that disorder does not nec-
essarily wipe out the structure of kinetically locked-in
transport, but rather reconfigures the pattern of plateaus.
In particular, not all statistically locked-in plateaus are
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centered on commensurate directions. This was one of the
principal surprises to emerge from experimental studies
of colloid flowing through optical trap arrays [5] and is a
clear feature of the experimental data in Fig. 3. Now this
restructuring can be explained as the emergence of high-
order locked-in plateaus from a statistical sampling of
low-order jumps. Indeed, as the bottom trace in Fig. 3
demonstrates, many of the commensurate directions cor-
responding to statistically locked-in plateaus are not mi-
croscopically accessible at 
 � 0:26. These plateaus are
absent, therefore, from the underlying pattern of deter-
ministically locked-in steps.

By contrast to the higher-order states, the principal
plateaus at q=p � 0 and q=p � 1 are both microscopi-
cally and deterministically locked in. These correspond
to transport along the [10] and [11] lattice directions,
respectively, which cannot be decomposed into lower-
index jumps. This distinction also is clear in the experi-
mental data [5]. Under some conditions, other directions
such as [21] also can become deterministically locked in,
particularly when both 
 and �� are small.

The calculated transport characteristics do not agree
with the experimental data in all detail. Qualitative dif-
ferences, such as the jump in the experimental data at
q=p � 1=2 can be ascribed to the 10� 10 structure of the
experiment’s optical trap array, which differs from the
extended geometry we considered here. Flowing colloidal
particles also are not drawn directly to optical traps’
centers as they jump through a trap array, but rather
follow more subtle and complicated trajectories. Clearly
though, these measurements more closely resemble our
model’s predictions than they resemble the simple deter-
ministic spectrum for the same conditions.

The distribution of statistically locked-in states de-
pends on the size of the array. Accessible states pro-
liferate as N increases, first smearing out the spectrum
130602-3



0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

2
3

1
3

1
2

0 1η

tanθ

0.02

0.04

0.06

0.08

0.12

0.14

0.10

0

1
3

1

2
3

1
2δθ

(a)

(b)

tanψ∗ 

FIG. 4 (color). Distribution of most probable locked-in states
as a function of driving direction tan� for N � 9: (a) as a
function of opening angle �� for filling factor 
 � 0:25; (b) as
a function of 
 for �� � 0:05 rad. Major plateaus are labeled
by q=p.
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of statistically locked-in states and then erasing even
the deterministic plateaus. In the large-N limit and for
�� > 0, the array has no overall effect on transport:  � �
 � �. The hierarchically structured transport character-
istics discovered experimentally and explained here are
features of mesoscopic systems.

The transport characteristics also depend sensitively
on the degree of randomization and the trap geometry.
Figure 4(a) shows that increasing randomization not only
provides access to statistically locked-in plateaus, but also
causes higher-order plateaus to be subsumed by lower-
order neighbors. The dependence on trap density, 
,
shown in Fig. 4(b) is even more striking. Plateaus corre-
sponding to locked-in states appear, grow, shrink, and
disappear as 
 changes.

For Brownian objects such as proteins flowing through
arrays of optical traps, both the diffusivity measured by
�� and the effective trap density 
 depend on the objects’
shapes, sizes, and optical properties [9]. Figure 4 there-
fore demonstrates that different classes of objects can
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select substantially different travel directions tan � for
a single fixed orientation tan� and intertrap separation b.
For example, larger objects with smaller values of �� and
larger values of 
 might be deterministically locked in to
the [10] direction under the same conditions that smaller
objects would seek out higher-order statistically locked-
in plateaus. The resulting angular separation can be large
enough that several fractions could be simultaneously
selected out of a mixed sample and collected in separate
microfluidic channels.

For electrons traveling through low-mobility materials
or flux quanta creeping through type-II superconductors,
our results demonstrate that locked-in transport not only
can persist, but even can be interestingly modified by
random scattering. In both of these systems, the effective
orientation of a microfabricated potential well array can
be tuned by applying a magnetic field, and the array’s
influence can be monitored through the Hall voltage [2].
Our model predicts that the number and distribution of
Hall plateaus will depend on the density of scattering
centers, and that the sign of the Hall coefficient can
change with monotonically increasing applied field for
arrays tilted with respect to the current.
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