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Transition from a Strongly Interacting 1D Superfluid to a Mott Insulator
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(Received 16 October 2003; published 31 March 2004)
130403-1
We study 1D trapped Bose gases in the strongly interacting regime. The systems are created in an
optical lattice and are subject to a longitudinal periodic potential. Bragg spectroscopy enables us to
investigate the excitation spectrum in different regimes. In the superfluid phase a broad continuum of
excitations is observed which calls for an interpretation beyond the Bogoliubov spectrum taking into
account the effect of strong interactions. In the Mott insulating phase a discrete spectrum is measured.
Both phases are compared to the 3D situation and to the crossover regime from 1D to 3D. The coherence
length and coherent fraction of the gas are measured in all configurations. We observe signatures for
increased fluctuations characteristic for 1D systems. Moreover, the collective oscillations cease near the
transition to the Mott insulator phase.
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selectively suppress tunneling, so that an array of one-
dimensional tubes with periodic modulation along their

�Vax;0 
 Amod sin�2
�modt��sin2�ky�. The modulation with
amplitude Amod and frequency �mod introduces two
Quantum gases trapped in the periodic potential of an
optical lattice have opened a new experimental window
on many-particle quantum physics. The recent observa-
tion of the quantum phase transition from a superfluid to a
Mott insulating phase in a Bose gas [1] has offered a first
glimpse into the physics which is now becoming experi-
mentally accessible. However, the full wealth of possibili-
ties has yet to be explored. Besides controlling the effect
of interactions in the trapped gas, it is conceivable to
induce disorder, to change the dimensionality of the
system, or to trap Fermi gases or Bose-Fermi mixtures.
The realization of these systems is expected to provide a
deeper understanding of general concepts related to
superfluidity and superconductivity.

Here we use the optical lattice to realize a strongly
interacting Bose gas in one spatial dimension and to study
the crossover to three dimensions. Emphasis is put on the
measurement of excitation spectra which characterize the
transition from the superfluid [2,3] to the Mott insulating
state [1,4,5]. Several features observed in the spectra go
beyond the description of current theoretical models.

Degenerate Bose gases trapped in the lowest band of an
optical lattice can be modeled using the Bose-Hubbard
Hamiltonian [6–9], in which the hopping of atoms be-
tween neighboring lattice sites is characterized by the
tunneling matrix element J, while the interaction energy
for two atoms occupying the same site is given by U. The
physics of this model is governed by the ratio between U
and J, i.e., between interaction and kinetic energy. This
parameter can be controlled by changing the depth of the
lattice potential. If the ratio U=J is below a critical value
the atoms are superfluid. Above this value the system
becomes Mott insulating. We access the one-dimensional
regime [6,10,11] using an anisotropic optical lattice con-
sisting of three mutually perpendicular standing waves.
By choosing large potential depths in two axes we can
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axis is formed and hopping is possible only along one
dimension.

We produce almost pure Bose-Einstein condensates of
typically 1:5� 105 87Rb atoms in the jF � 2; mF � 2i
hyperfine ground state in a magnetic trap with trapping
frequencies of !x � 2
� 18 Hz, !y � 2
� 20 Hz, and
!z � 2
� 22 Hz. The optical lattice is formed by three
retroreflected laser beams which are derived from laser
diodes at a wavelength of  � 826 nm [12]. At the posi-
tion of the condensate the beams are circularly focused to
1=e2 radii of 120 �m (x and y axes) and 105 �m (z). The
three beams possess mutually orthogonal polarizations
and their frequencies are offset with respect to each other
by several 10 MHz. The linewidth of the lasers is of the
order of 10 kHz.

In order to load the condensate into the ground state of
the optical lattice, the intensities of the lasers are slowly
increased to their final values using an exponential ramp
with a time constant of 25 ms and a duration of 100 ms.
The resulting optical potential depths Vx;y;z are propor-
tional to the laser intensities and are conveniently ex-
pressed in terms of the recoil energy ER � � �h2k2�=�2m�
with k � 2


 and the atomic mass m. To prepare an array of
one-dimensional tubes, two lattice axes are ramped to
V? � Vx � Vz � 30ER and the third one to a much lower
value Vax;0 � Vy. In this configuration the transverse
tunneling rates Jx and Jz are small and contribute a
correction of the order of Jx;z=� 	 1 to the 1D character-
istics of the individual tubes, where � is the chemical
potential of the sample. It is convenient to include the
anisotropic tunneling between all nearest neighbor sites
which yields the resulting J � 2�Jx 
 Jy 
 Jz�.

We study the excitation spectrum by employing
amplitude modulation of the axial lattice potential
Vax to perform two-photon Bragg spectroscopy [13].
The lattice potential takes the form Vax�y; t� �
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FIG. 1. Spectroscopy of the 1D superfluid (open circles) and
the Mott insulating phase (solid circles) with values of U=J of
approximately 2.3 and 14, respectively. Error bars reflect the
statistical error of five measurements.
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sidebands with frequencies �mod relative to the lattice
laser frequency which define the energy h�mod of the
excitation. Because of the Bragg condition atoms scatter-
ing two photons receive a momentum transfer of 0 �hk or
2 �hk. In contrast to applying a potential gradient across the
lattice [1], this method is not susceptible to effects like
Bloch oscillations and Zener tunneling which occur for
low axial lattice depths. Furthermore, the excitation en-
ergy is precisely determined and does not involve any
parameters that need calibration.

After the excitation, the experimental sequence con-
tinues by ramping down the lattice potentials linearly in
15 ms to Vax�V?�4ER where the atoms are able to tun-
nel again in all three dimensions between the sites of the
lattice. To allow for rethermalization of the system, the
atoms are kept at this lattice depth for 5 ms. Then all op-
tical and magnetic potentials are suddenly switched off.
The resulting matter wave interference pattern is detected
by absorption imaging after 25 ms of ballistic expansion.
The width of the central momentum peak is taken as a
measure of how much energy has been deposited in the
sample by the excitation. If the energy increase is small,
the peak is well fitted by a bimodal distribution. For reso-
nant excitation there is only a single Gaussian component,
reflecting that the temperature of the atoms has signifi-
cantly increased. To be independent of the shape of the
peak we use the full width at half maximum (FWHM) as
a measure of the introduced energy. Although this under-
estimates small energy increases, the important reso-
nances and features of the spectra are well shown.

The duration tmod � 30 ms and amplitude Amod �
0:2Vax;0 of the modulation are chosen such that the result-
ing excitation of the condensate does not exhibit satura-
tion effects for all measurements presented here. We have
verified that all atoms remain in the lowest Bloch band by
adiabatically switching off the lattice potentials [14] after
the modulation. When we load a cold thermal cloud into
the lowest Bloch band and apply our modulation scheme,
we do not observe excitations.

Figure 1 displays the fundamental change in the exci-
tation spectrum for a 1D Bose gas when the crossover
from the superfluid to the Mott insulating phase occurs:
The broad continuum of the superfluid contrasts with the
discrete spectrum of the Mott insulator. One surprising
feature is that we can excite the superfluid with our
scheme at large h�mod contrary to predictions for the
weakly interacting superfluid in an optical lattice formed
by a single standing wave [2]. In our experiment strong
interactions lead to a significant quantum depletion,
which is �50% for the 1D configuration even with U=J �
2:3 [15]. Therefore this parameter may not be regarded
small as in standard Bogoliubov theory, but higher order
excitations should be taken into account [16]. In combi-
nation with the broken translational invariance in the
inhomogeneous trap, this could explain the nonvanishing
excitation probability observed in the experiment at high
energies [17].
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A full series of spectra for different values of U=J
ranging from the superfluid via the crossover region to
the Mott insulating phase is shown in Fig. 2. Figure 2(a)
displays the 1D situation with V? � 30ER. The crossover
from one to three dimensions [Fig. 2(b)] is achieved by
reducing the transverse confinement in the optical lattice
to V? � 20ER. Then the tunneling time between the 1D
tubes is of the order of tmod and thus the interaction
between the tubes is not negligible any more [18].
Finally, Fig. 2(c) shows the three-dimensional case with
V? � Vax;0.

In one dimension [Fig. 2(a)] we observe the appearance
of the discrete structure, which is characteristic for the
Mott insulating phase, between U=J � 4 and U=J � 8.
Above U=J � 20 there is no more background due to the
vanishing superfluid component. Our results are in accor-
dance with the prediction U=J � 5:8 for entering the
n � 1 Mott insulator based on a mean-field theory [6,9].
Calculations beyond the mean-field approach give an
onset of the Mott insulating phase in the homogeneous
1D system at U=J � 1:8 [8]. However, the finite size of
the trap prohibits a sharp transition [10], so that the
fraction of Mott insulating atoms increases gradually
with U=J.

For the superfluid we obtain spectra which differ sig-
nificantly from the results of Ref. [1], since the superfluid
excitations decrease at higher energies. This decrease is
rather slow for the 1D gas but becomes more pronounced
when the tunneling between the 1D gases is increased
[Figs. 2(b) and 2(c)]. Our excitation scheme does not
induce dephasing that occurs when the strongly interact-
ing condensate is accelerated near the edge of the
Brillouin zone [19]. This might cause the broadening
and the background in the tilted lattice experiments at
high energies in Ref. [1]. The width of the superfluid
spectra for the 1D gas is on the same order as twice the
width of the lowest band for Bogoliubov excitations [20].
130403-2
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In the Mott insulating phase we find the first resonant
peak for all data sets close to the calculated value of U. A
second peak appears at �1:91 0:04� times the energy of
the first resonance, somewhat smaller than the value of 2
reported in [1]. This resonance might be attributed to
defects where lattice sites with n � 1 atom next to sites
with n � 2 atoms are being excited. For the 1D system
and in the dimensional crossover regime [Figs. 2(a) and
2(b)] a much weaker resonance appears at �2:60 0:05�
times the energy of the first resonance, which could
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FIG. 2 (color online). The measured excitation spectrum of
an array of 1D gases (V? � 30ER) is shown in (a) for different
values of Vax;0. The interaction ratios U=J given in brackets are
calculated numerically using a band structure model in the
tight-binding approximation [9]. Spectrum (c) shows the super-
fluid to Mott insulator transition in the 3D case (V? � Vax;0).
The crossover region between the one- and the three-
dimensional system (V? � 20ER) is shown in (b).
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indicate higher order processes of two atoms tunneling
simultaneously. In Fig. 3(a) we plot the rms width of the
first resonance in the excitation spectrum of the Mott
insulating phase when fitted by a Gaussian. In Fig. 3(b)
we show the ratio of the amplitudes of the second and the
first peaks. Apparently, in the 1D system the first peak is
wider and the second peak more pronounced as compared
to the 3D situation, which could be an indication of
increased fluctuations in 1D systems.

Compared to the superfluid properties the coherence
properties of the system provide complementary infor-
mation about the state of the gas. They are probed by
studying the matter wave interference pattern [1,21]. Here
we first prepare the array of 1D systems as above but do
not apply our excitation scheme. Instead, after holding the
atoms at the final lattice depth for th � 30 ms, we in-
crease Vax rapidly (<40 �s) to about 25ER and then
abruptly switch off all optical and magnetic trapping
potentials. This procedure projects the different initial
configurations onto the same Bloch state. To extract the
number of coherent atoms Ncoh from the interference
pattern, the peaks [22] at 0 �hk, 2 �hk, and 4 �hk are fitted
by Gaussians [Fig. 4(b)]. Incoherent atoms give rise to a
broad Gaussian background which dominates for higher
Vax;0. Taking this fit as a measure of the number of in-
coherent atoms Nincoh, we calculate the coherent fraction
fc � �Ncoh�=�Ncoh 
 Nincoh�. As shown in Fig. 4(a), fc de-
creases slowly to zero for increasing values of U=J and
appears to be almost independent of the dimensionality.
This coincides with the prediction that for strongly inter-
acting Bose gases in optical lattices the superfluid fraction
can be significantly different from the coherent fraction,
and that the decrease of fc is not a sufficient signature of
entering the Mott insulating phase [23]. In Fig. 4(c) we
plot the width of the central peak of the interference
pattern, which is a measure of the coherence length of
the gas. An increasing width is a good indicator for the
presence of a Mott insulating phase since even a small
Mott insulating domain reduces the coherence length of
the sample, as elucidated in numerical calculations [24].
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FIG. 3 (color online). (a) Width of the first resonance peak in
the spectrum of the Mott insulator. (b) Ratio of the amplitudes
of the second and the first peaks of the spectrum of the Mott
insulator. The error bars mark the error of the Gaussian fits.
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FIG. 4 (color online). (a) Coherent fraction versus U=J. The
error bars are determined by the statistical error of four mea-
surements. (b) The column sum of the optical density (circles)
and the fit (solid line) from which the numbers of coherent and
incoherent atoms are deduced for the 1D case. The inset shows
the absorption image after 10 ms of time of flight (dimensions
360 �m� 467 �m). (c) Width of the central momentum peak
versus U=J.
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Our data show that the increase in width starts at much
lower values of U=J for the 1D gas than for the 3D gas.
This supports the expectation that due to the more pro-
nounced quantum fluctuations in the 1D geometry the gas
enters the Mott insulating state at lower values of U=J
[8,10,11,24]. Experimentally, thermal fluctuations may
also contribute to the observed width. However, by com-
paring the width of the interference peak for different
hold times (th � 1 and 30 ms) we find that the primary
effect of the additional heating is an overall increase of
the width rather than a change of the slope of the curve.

One feature of the Mott insulating phase is its lack of
compressibility [6]. If a potential gradient is applied
across the lattice, the inability to redistribute atoms in
the lattice results in a breakdown of the flow of atoms.
Even if only a fraction of the atoms in our inhomoge-
neous trap is locally incompressible and pinned in the
Mott insulating state [10], collective oscillations should
suspend. In the experiment, the array of one-dimensional
gases is prepared in the same way as before. Then, we
apply a small potential gradient (far less than any reso-
nance gradients [1]) for 1 ms to accelerate the atoms in the
axial direction. We observe a very strong increase in the
damping of the small amplitude dipole oscillations even
for very low Vax;0, a behavior which is different from the
three-dimensional gas. Critical damping is reached at
Vax;0 � 3ER, and at Vax;0 � 10ER we cannot displace
the atom cloud anymore.

In conclusion, we have prepared an array of one-
dimensional strongly interacting Bose gases and mea-
130403-4
sured the excitation spectra in the superfluid and the
Mott insulating regime. The spectrum of the superfluid
exhibits excitations at high energies which are not pre-
dicted by current theories for weakly interacting bosons
in an optical lattice and have so far only been discussed in
the context of superfluid helium. This shows that the
strong interactions and the significant quantum depletion
change the properties of the Bose gas considerably, al-
ready much below the crossover to the Mott insulator. The
effect of reduced dimensionality on the crossover from
superfluid to Mott insulator was most pronounced in the
measurements of the coherence length of the gas.
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[11] H. P. Büchler, G. Blatter, and W. Zwerger, Phys. Rev. Lett.

90, 130401 (2003).
[12] H. Moritz, T. Stöferle, M. Köhl, and T. Esslinger, Phys.
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