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We obtain pulse-driven Rabi oscillations guided by a generalization of the rotating-wave approxi-
mation to include, in the optical-Bloch equations, two-level systems with a time-varying transition
energy. We achieve this by using chirped pulses with the central frequency given by the time-varying
transition energy. Using this approach, we predict Rabi oscillations in intersubband transitions in a two-
subband n-type modulation-doped quantum well by taking into account the time-dependent intersub-
band energy-gap renormalization due to depolarization-shift effects. We obtain Rabi oscillations for j�
(j � 0; 1; 2; . . . ) pulses in the presence of dephasing.
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ization due to depolarization shift. With a slight modifi- n-type QW.
It is well known that electromagnetic pulses with a
slowly varying amplitude at resonance with a two-level
quantum mechanical system give rise to coherent oscil-
lations in the populations of the two levels known as
Rabi oscillations [1]. When the pulse area A�z� �
�
R
1
�1 F0�z; t� dt, with F0�z; t� the slowly varying enve-

lope of the pulse, is an even multiple j � 2m of �, the
pulse propagates without decay in a single-resonance
two-level atomic medium. On the other hand, for j �
2m� 1, j� pulses cause population inversion and are
rapidly attenuated. This occurs only if the pulse dura-
tion is shorter than the homogeneous depopulation and
decoherence times T1 and T2, respectively, and also any
dephasing time due to inhomogeneous broadening; detun-
ing has to be negligible as well on this time scale. These
results were obtained by McCall and Hahn [2,3]. The
Rabi-flopping concept is the framework on which virtu-
ally all subsequent theory and experiment on coherent
optical pulses interacting with two-level atoms [4,5],
one of the most fundamental problems of quantum optics,
are based. It has found large experimental success and
broad technological applications also. Furthermore, Rabi
oscillations are a prototypical example of a nonperturba-
tively driven transition in a two-level system, and thus
serve as a model for transitions beyond Fermi’s golden
rule. As such, Rabi oscillations involve dynamics on a
time scale shorter than the dephasing time associated
with coupling to a bath, which in solid-state systems is
far from typical. The ability to produce Rabi oscillations
in a given system, moreover, indicates whether that sys-
tem is a candidate for more elaborate coherent manipula-
tion, such as in coherent control experiments or for
quantum computing.

In this Letter, we aim to extend the validity of these
results to n-type modulation-doped semiconductor quan-
tum wells (QWs). We apply our theory here to intersub-
band transitions in a two-subband symmetric QW with
only homogeneous broadening and energy-gap renormal-
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cation, this approach can also be applied to interband
transitions. In the following, we show that rather substan-
tial Rabi oscillations can be achieved in intersubband
transitions in QWs, but only if the time-dependent renor-
malization of the subband splittings is taken into account.

Semiconductors provide only an approximate realiza-
tion of a two-level system. Even in the absence of carrier-
carrier interactions, a two-band semiconductor presents a
set of two-level systems with natural frequencies corre-
sponding to the energies of allowed vertical transitions.
The introduction of carrier-carrier and carrier-phonon
interactions, together with the accompanying optical non-
linearities, produce even further departures from the two-
level system. Nevertheless, phenomena closely allied with
two-level Rabi flopping have been observed. It has al-
ready been shown experimentally in semiconductors that
Rabi oscillations can occur [6,7]. More recently in hetero-
structures, � pulses have been used to perform a single-
electron coherent turnstile in quantum dots under a dc
bias [8]. Theoretical studies of Rabi oscillations for inter-
band transitions have also already been made [9–12].
Although they took into account the effect of many-
body interactions in the semiconductor-Bloch equations
by setting up the pulse frequency with detuning with the
unrenormalized energy gap, this frequency was fixed in
time and the pulse areas that achieved the best results
were not multiples of �. The general plan was to choose
simple pulse shapes and vary the area to achieve the
deepest Rabi flopping subject to this constraint. Suppose
the energy gap !�t� � E1�t� � E0�t� in fact varies with
time. How can one find an effective � pulse for this
system? We show that one can use a pulse that is suitably
chirped (time-dependent carrier frequency) to track self-
consistently the renormalized subband splitting in time
induced by the pulse itself. We begin quite generally with
a quantum mechanical two-level system whose levels
depend upon time. We then justify this ansatz with de-
tailed numerical calculations for the modulation-doped
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In GaAs=AlGaAs QWs, the conduction subbands are
quite parabolic with little mass dispersion; therefore the
dependence on k of the transition energy and the momen-
tum matrix elements are safely neglected. This is an aid
to the treatment, since models based on the optical-Bloch
equation will, to a large extent, be applicable to the in-
tersubband transitions. From the two-level subspace of
solutions of the Schrödinger equation, we find the ampli-
tudes a and b for the lower and upper levels, respectively,
obey i _aa�t� � �F�t�b and i _bb�t� � !�t�b��F�t�a, where
!�t� is the time-dependent energy difference of the levels,
� is the dipole moment, and F�t�� �F0e

�i
R

t

0
!�s�ds

�
F�
0e

i
R

t

0
!�s�ds	 is the incident electric field ( �h � 1).

If we make the transformation b�t� � ~bb�t�e�i
R

t

0
!�s� ds,

we obtain i _aa�t� � �F�t�~bbe�i
R

t

1
!�s� ds and i_~bb�t��

�F�t�aei
R

t

0
!�s�ds. We now suppose that the electric-

field amplitude depends on time, i.e., F0 � F0�t� is the
slowly varying pulse envelope. The rotating-wave ap-
proximation (RWA), in the frame whose rotation is
given by exp��i

R
t
0!�s� ds	, is applied to the fore-

going and results in i _aa�t� � F�
0�t��~bb and i_~bb�t� �

F0�t��a. One notes that these are the same equations
resulting in Rabi flops when a two-level system with a
constant energy gap is driven by a slowly varying pulse
envelope at resonance. Namely, if the j� pulse for a time-
independent level splitting is F�t� � F0�t� exp��i!t� �
c:c:, then for !�t� the corresponding effective j� pulse is
F�t� � F0�t� exp��i

R
t
0 ds!�s�	 � c:c:.

For the sequel, it will prove useful to restate the former
in the language of the density matrix. Begin with the
free-carrier density-matrix equations _�� � 4� Im�F�t�
and _�� � i!�t��� i��F�t�, where � is the popula-
tion difference between upper and lower levels and � is
the off-diagonal element of the density matrix in the
basis of the two levels. The driving field is chosen to be

F�t� � F0�t�e
�i
R

t

0
!�s�ds

� c:c. Then, as above, using the

transformation � � ~��ei
R

t

0
!�s�ds followed by our RWA

ansatz, we obtain _�� � �2i��~��� ~����F0�t� and _~��~�� �
i��F0�t�, where without loss of generality we assume
the phase dependence of F0�t� to be constant in time. By
integrating the above equations, we obtain ��t� �
�0 cos�2�

R
t
0 F0�s� ds	, where �0 is the equilibrium

population difference between the bottom and the up-
per level. The polarization is given by P�t� �
�N��0 sin�2�

R
t
0 F0�s� ds	 sin

R
t
0!�s� ds, which is a

simple generalization of the polarization from the usual
Rabi flops in two-level systems [5]. Once again, this
discussion shows that the envelope for a j� pulse, with
its high frequency varying in time, is the same as in the
case where the levels are time independent. This will now
be applied to Rabi oscillations in intersubband transitions.

The resonant intersubband THz response of
modulation-doped n-type QWs is known to be highly
nonlinear [13]. As electrons undergo transitions between
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the two subbands, the band bending is modified dy-
namically. Other nonlinearities include time-dependent
Pauli blocking and excitation-induced dephasing. The
result is that the intersubband plasmon exhibits a signifi-
cant nonlinear response. Our approach is to apply the
time-dependent Hartree approximation to describe the
intersubband response to a strong THz field. This ap-
proach has been used [14,15] to describe the experi-
mentally observed nonlinearities in QWs [16,17]. The
time-dependent Hartree approximation with cw THz
driving is valid for wide QWs at moderate to high carrier
densities in materials where mass dispersion can be safely
neglected [18]. For pulse durations of several picoseconds,
the linewidths are narrow enough that one can assume the
results are close enough to those of cw THz driving. The
cases we concentrate on fall well within this range of
validity. As such, exchange and exchange-correlation
effects are expected to be small for the purposes of this
study.We use the forgoing treatment of a two-level system
to obtain effective j� THz pulses. Having obtained these
pulses, we use them in numerical computations based on
the time-dependent Hartree approximation to calculate
!�t� and thus the THz response of the QW. Although in
Ref. [7] the possibility of a time-dependent band gap was
discussed in the context of interband Rabi flopping, the
excitation levels were always sufficiently low that these
effects did not play a major role.

The treatment of the nonlinear THz intersubband re-
sponse of QWs is discussed in depth elsewhere [19,20].
Here, we quote the essential results. We have shown that
the time-dependent Hartree approximation can be con-
veniently restated in terms of the density matrix [19,20].
The density-matrix equations for intersubband transi-
tions in a symmetric QW are given by

_�� �� �1����0� � 4 Im���F�t� � �Re�	;

_�� � i!10�� �2�10 � i���F�t� � �Re�	

� i�������0�=4; (1)

where !10 is the Hartree self-consistent QW intersubband
energy gap, �1 � 1=T1 and �2 � 1=T2, and � and � are
constant coefficients due to Coulomb interactions numeri-
cally calculated from the Hartree approximation, which
are defined in Ref. [20]. [They are roughly / NsLQW,
where LQW is the QW width.] Within the RWA we can
recast Eq. (1) in the free-carrier form if we take !�t� �
!10 � ��=2� ����� �0�=4. With this information we
can design pulses on demand. This approach could in
principle be applied to more complex systems, such as
to intersubband transitions with mass dispersion, ex-
change interaction, and electron-electron scattering, and
to interband transitions; in such cases, we merely utilize
the appropriate form of !�t�. The two-level model should
be accurate provided the renormalized energy does not
127404-2
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depend too strongly on k (since this dependence generates
inhomogeneous broadening).

We now present numerical results of the action of
appropriately designed j� pulses on n-type modulation-
doped QW’s. The GaAs=AlGaAs double QW structure
used for our calculations is 310 �A wide and 200 meV
deep with one barrier of 50 �A in width and 50 meV in
height, as shown by the inset in Fig. 1. The QW inter-
subband energy !10 is about 1.4 THz (5.7 meV). We take
T1 � 0:7 ns, T2 � 6:6 ps (�2 � 0:1 meV), and the tem-
perature T � 4 K. In all cases, the pulse envelopes F0�t�
are Gaussian. The Eqs. (1) were integrated using the
fourth-order Runge-Kutta method with 2048 steps per
cycle of drive.

In Fig. 1, we show that the usual � pulses do not work
properly in inverting the populations once the time-
dependent depolarization-shift effects, expressed via the
nonlinear terms of !�t�, become relevant. Namely, we
employ naive � pulses, as shown in Fig. 1(a). Frames (b)
and (c) show the inversion for various electron densities
Ns neglecting and including dephasing, respectively. At
very low doping levels (Ns � 0 in the figure, but in
practice �109 cm�2), the � pulse achieves population in-
version; however, at moderate densities of �1010 cm�2,
the degree to which the system has been inverted is
strongly degraded. Above Ns � 7� 1010 cm�2, the upper
subband becomes populated, and the pulse has little effect
on the inversion.
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FIG. 1. (a) � pulse with a fixed carrier frequency at resonance
with the time-independent subband splitting !10. The inset
shows the QW potential in the conduction band together with
the two relevant states. (b) The population dynamics in the
absence of dephasing. No population inversion is achieved
when depolarization effects are relevant, i.e., above Ns �
1010 cm�2. (c) Same as in (b), but with a dephasing time of
T2 � 6:6 ps.
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We now see if including the time-dependent renormal-
ization of the subband splitting within the pulse achieves
a higher degree of inversion. In Figs. 2(a) and 2(b), we see
that our prescription requires a strongly chirped pulse
(the blueshift of the initial frequency is due to depolar-
ization shift, which changes sign when there is inversion;
the fast small-amplitude oscillations in !�t� indicate that
the RWA is not perfect, but as long as these oscillations
are relatively small the RWA is a good approximation).
The illustrated pulse is an example for Ns � 7�
1010 cm�2. One can see that our method for generating
� pulses works quite effectively in frames (c) and (d)
(without and with dephasing) at densities >1010 cm�2,
where the unchirped-pulse effectiveness in achieving
inversion becomes severely degraded. Note that the pulse
duration is slightly longer than T2 so that dephasing
places a limit on the greatest inversion that can be
obtained.

The pulses employed above have peak fields of
400 V=cm. Such large-amplitude pulses are difficult to
obtain; however, smaller peak fields imply longer pulse
duration for a given value of A. Nevertheless, it is of
interest to see the degree to which the technique might be
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FIG. 2. Frames (a) and (b) show an effective � pulse account-
ing for the time-dependent renormalized subband splitting.
Note the strong down chirp resulting in a decrease in carrier
frequency over the pulse duration. This example is for electron
density Ns � 7� 1010 cm�2. The pulse shape is Gaussian and
the fast frequency varies according to !�t� for the QWas given
in the text. (a) The frequency dependence and the (b) electric
field of the effective � pulse. Frames (c) and (d) show the
inversion in the absence and presence of dephasing (with T2 �
6:6 ps), respectively.
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FIG. 3. Upper frame shows effective � and 2� pulse enve-
lopes with peak electric fields of 190 V=cm; the lower frame
shows the inversion. In particular, the weak oscillation in the
curve in the lower frame for the 2� pulse indicates a partial
Rabi flop. Here Ns � 7:0� 1010 cm�2 and T2 � 6:6 ps.
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useful for pulses with smaller peak fields. We choose the
value of 190 V=cm; chirped pulses with these amplitudes
are likely to be obtainable using optical rectification of
ultrafast optical pulses in suitably designed nonperiodi-
cally poled lithium niobate [21]. In Fig. 3, we consider
the action of optimized effective � and 2� pulses with a
peak amplitude of 190 V=cm. In this case, the �-pulse
duration is �25 ps > T2. Because of dephasing, the �
pulse does not achieve complete inversion, nor does the
2� pulse return the system to the lower level; however, the
inversion does show the signature of �- and 2�-pulse
action. Clearly, there is a tradeoff between peak field
and pulse duration.

In conclusion, we have generalized the concept of Rabi
flopping to the case where the level separation varies with
time sufficiently slowly that a simple extension of the
RWA may be applied. In particular, we consider the case
where the level splitting depends self-consistently on the
optical pulse. We show how to obtain the self-consistent
effective j� pulses leading to population oscillations.
The method is applied to intersubband Rabi flopping in
modulation-doped n-type QWs, where the time-dependent
subband-energy renormalizations may be substantial. We
find that deep Rabi flopping can be achieved even in the
presence of dephasing for moderate doping provided the
peak fields are on the order of 200 V=cm. More broadly,
the technique may be helpful to generate Rabi oscillations
in other systems exhibiting time-dependent level renor-
malizations, and may find application in coherent control.
Very recently, some phase-resolved nonlinear-response
experiments detected intersubband Rabi oscillations in
QWs in the tens of THz [22]; in principle they should be
able to study the effects of many-body interactions in the
127404-4
coherent evolution of polarization when they use wider
QWs with doping concentrations similar to ours.
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