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Hot Spots and Pseudogaps for Hole- and Electron-Doped High-Temperature Superconductors
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Using cluster perturbation theory, it is shown that the spectral weight and pseudogap observed at the
Fermi energy in recent angle resolved photoemission spectroscopy of both electron- and hole-doped
high-temperature superconductors find their natural explanation within the t-t0-t00-U Hubbard model in
two dimensions. The value of the interaction U needed to explain the experiments for electron-doped
systems at optimal doping is in the weak to intermediate coupling regime where the t-J model is
inappropriate. At strong coupling, short-range correlations suffice to create a pseudogap, but at weak-
coupling long correlation lengths associated with the antiferromagnetic wave vector are necessary.
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contrast with previous attempts to obtain a unified model tions obtained in the large U limit. It reduces to the exact
Deep insight into the nature of strongly correlated
electron materials, such as high-temperature supercon-
ductors, has emerged in the past few years from both
experiment and theory. On the experimental side, angle
resolved photoemission spectroscopy (ARPES) [1] and
scanning-tunneling experiments [2] provide us with de-
tailed information on the nature of single-particle states.
This information must be explained by theory if we are to
understand correlated materials. For example, contrary to
one of the central tenets of Fermi-liquid theory, sharp
zero-energy excitations are not enclosing a definite vol-
ume in the Brillouin zone. Certain directions are almost
completely gapped while others are not. This is the fa-
mous pseudogap problem that has been the focus of much
attention in the field [3].

On the theoretical side, dynamical mean-field theory
(DMFT) [4] has allowed us to understand the evolution of
single-particle states during the interaction-induced
(Mott) transition between metallic and insulating states
[5] (parent compounds of high-temperature superconduc-
tors are Mott insulators). Generalizations of DMFT, such
as the dynamical cluster approximation [6] and cellular
DMFT [7] are, however, necessary to take into account
the momentum dependence of the self-energy that is
neglected in DMFT and is clearly apparent in ARPES
experiments [1]. Until now, these calculations have been
restricted to hole-doped systems and small system sizes
or to the perfectly nested case. The nature of single-
particle excitations, and, in particular, the pseudogap in
cuprate superconductors, is thus still an open theoretical
problem.

Without any assumption about the nature of the ground
state, we show that the Hubbard model with fixed
first-, second-, and third-neighbor hopping (t , t0, and t00)
accounts for the strikingly different locations of low-
energy excitations observed experimentally in hole- and
electron-doped cuprate superconductors [8,9]. At zero
doping, we have a Mott insulator with a large U. By
0031-9007=04=92(12)=126401(4)$22.50 
[10], we will see that the interaction strength U varies as
one moves from the hole-doped to the electron-doped
systems. That parameter should be at least of the order
of the bandwidth for hole-doped systems. In this case, the
pseudogap is controlled mainly by Mott physics with
short-range correlations. The situation is similar for
underdoping with electrons. As we approach the opti-
mally doped electron case, the pseudogap occurs at a
smaller coupling where Mott physics is not essential.
Long correlation lengths then play an essential role in
creating the pseudogap, whereas in the strong-coupling
case they are not necessary for the pseudogap to appear.
These results give insight into two different mechanisms
for the pseudogap phenomenon and into the nature of the
breakdown of Fermi-liquid theory in these systems. We
also gain insight into the appropriate microscopic model
of high-temperature superconductors.

Model and methodology.—We study the square lattice
Hubbard model with on-site Coulomb repulsion U. We
set the first-neighbor hopping t to unity, and introduce
second-neighbor (diagonal) hopping t0 � �0:3t and
third-neighbor hopping t00 � 0:2t, as suggested by band
structure calculations [11]. The diagonal hopping t0 is a
key ingredient to understand the physics, even though its
precise value can vary slightly between different com-
pounds. It frustrates antiferromagnetic (AFM) order and
removes particle-hole symmetry, thereby also allowing
the AFM zone boundary to cross the Fermi surface. The
third-neighbor hopping t00 makes the Fermi surface
slightly bulge away from the intersection with the AFM
zone boundary, as observed experimentally [8], and
makes low-energy excitations more stable along the di-
agonal of the Brillouin zone.

We use cluster perturbation theory [12] (CPT) to gain
insight into the single-particle states of the Hubbard
model and their relation to cuprate superconductors. The
method can reproduce the spin-charge separation of one-
dimensional systems [12] as well as the dispersion rela-
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result at U � 0 and in the atomic limit (tij � 0). It is
based on exact diagonalizations of finite clusters that are
coupled through strong-coupling perturbation theory. It
basically amounts to replacing the exact self-energy by
that of the cluster only [13]. The Green function calcu-
lated by CPT is made up of a set of discrete poles, as in
ordinary exact diagonalizations, except that (i) more
poles have substantial weight and (ii) they disperse con-
tinuously with wave vector, allowing for clear momentum
distribution curves. The results presented here were cal-
culated on 12-site rectangular clusters. The resulting
Green function is averaged over the (3� 4) and (4� 3)
clusters to recover the original symmetry of the lattice.
We checked that the main features are the same when
using clusters of different shapes. Our finite energy reso-
lution, of about 0:12t, does not allow us to resolve effects
related to superconductivity. We compare with ARPES
experiments of similar resolution.

The Mott transition.—We begin in Fig. 1 with a plot of
the chemical potential � as a function of doping for
various values of the interaction strength. The different
results in this figure are obtained from clusters of differ-
ent sizes ranging from 4 to 13 sites with varying geome-
try. The smooth behavior of the function away from half
filling shows that the cluster sizes are large enough to
provide reliable results. There is a jump in � when U is
large enough, namely, above U � 6t roughly. The jump in
� does not follow from a long-range ordered ground state
since the basic clusters are finite. It is instead a clear
manifestation of the Mott phenomenon.

Figure 2 displays the single-particle spectral weight
A�k; !� as a function of energy for wave vectors k along
the high-symmetry directions shown in the inset.
Only the !< 0 domain of A�k; !� is accessible to
ARPES. Figure 2(a) illustrates the effect of increasing
interaction strength on a near optimally hole-doped sys-
tem while Fig. 2(b) does the same in the electron-doped
case. Clearly, there is a range of frequencies where
A�k; !� � 0 for all wave vectors. This is the Mott gap.
At finite doping, it always opens up away from zero
energy when U is sufficiently large. In the electron-doped
FIG. 1. Chemical potential calculated at various dopings us-
ing CPT, in units of t, the nearest neighbor hopping. For this
figure only, t0 � �0:4t and t00 � 0.
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case, ! � 0 is in the upper Hubbard band. The lower
Hubbard band is at negative energies, as has been ob-
served in ARPES [14]. The overall narrowing of the band
just below the Fermi level is more important in the
electron-doped case. Also, the shape of the dispersion is
different from that obtained in a mean-field AFM state
[15], and there is no clear doubling of the dispersion
relation of the type that occurs in one dimension when
there is spin-charge separation.

Fermi surface plots and pseudogap.—We now move to
the main point of our paper, namely, the pseudogap and
hot spots. The top two panels of Fig. 3 for a 17% hole-
doped system represent the strength of A�k; !� at ! � 0.
As a function of interaction strength, the intensity dis-
appears gradually near the �
; 0� and �0; 
� points, leav-
ing zero-energy excitations only near the diagonal. Large
values of U �U > 8t� seem necessary to reproduce the
experimentally observed spectral function of hole-doped
systems [9], even more so on a 11% doped system (not
shown). The lower panels show the imaginary part of
the self-energy (or scattering rate) corresponding to the
FIG. 2. Single particle spectral weight, as a function of en-
ergy ! in units of t, for wave vectors along the high-symmetry
directions shown in the inset. (a) CPT calculations on a 3� 4
cluster with ten electrons (17% hole doped). (b) the same as (a),
with 14 electrons (17% electron doped). In all cases we use t0 �
�0:3t and t00 � 0:2t. A Lorentzian broadening � � 0:12t is
used to reveal the otherwise delta peaks.

126401-2



(0,0)

(π,π)

(0,0)

(π,π)

A
(k

,0
)

− 
Im

 Σ
(k

,0
)

U= 4 U= 8

0.2 1.2

0% 90%

0.08 0.22

FIG. 4 (color). Same as Fig. 3, but for an electron-doped
system (14 electrons on a 3� 4 cluster). The white dashed
line on the left panels is the AFM zone boundary, showing the
coincidence of hot spots with the intersection of this line with
the Fermi surface.
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FIG. 3 (color). Top: Intensity plot of the spectral function at
the Fermi level, in the first quadrant of the Brillouin zone, for a
17% hole-doped system (ten electrons on a 3� 4 cluster). Here
t0 � �0:3t and t00 � 0:2t (the gray dashed line is the noninter-
acting Fermi surface). Bottom: Imaginary part of the self-
energy (in units of t) corresponding to the same parameters as
the top plot. A Lorentzian broadening is used: � � 0:12t (top)
and � � 0:4t (bottom).
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momentum-dispersion curve right above. For U � 2t, the
self-energy is very small overall, but has a maximum
along the Fermi surface where the Fermi velocity is
smallest (density of states largest); this illustrates how
we depart from the Fermi-liquid picture [in which

00�0� � 0] as we move towards intermediate coupling.
At U � 8t, the scattering rate is much larger and affects
larger regions separated by roughly �
;
�. In all cases a
higher scattering rate leads to removal of spectral weight.

The electron-doped case is displayed in Fig. 4 for 17%
doping. At moderate U, the spectral intensity drops only
at the intersection of the AFM Brillouin zone with the
Fermi surface. However, for larger U, only the neighbor-
hoods of �
; 0� and �0; 
� survive. The latter situation is
analogous to that observed by ARPES in electron-
underdoped systems and can be reproduced by calcula-
tions (not shown) with U large at 11% doping. At optimal
doping, however, ARPES results [14] look instead quali-
tatively similar to the upper left panel of Fig. 4.

Hot spots and pseudogap.—The Fermi-surface points
where the intensity decreases (Fig. 4) are called hot spots.
However, a pseudogap is characterized not only by lower
intensity at the Fermi energy, but also by a dispersive
peak that stops short of crossing the Fermi surface. This
experimentally well-known phenomenon is illustrated
on Fig. 5, which shows energy dispersion curves for
wave vectors along the �
; 0� � �
;
=2� stretch in the
hole-doped case (left) and along the diagonal in the
electron-doped case (right). For small values of U, a
well-defined quasiparticle exists at the Fermi level
126401-3
(! � 0). At stronger coupling (U � 8t), a pseudogap
comparable to experimental observation is clearly visible
at the Fermi level.

Discussion: strong- and weak-coupling pseudogaps.—
As in previous studies, the strong-coupling pseudogap
[16] is concomitant with the Mott gap but is clearly
distinct from the latter. The Mott gap is a purely local
(on-site) phenomenon that occurs for all wave vectors and
is not tied to ! � 0. By contrast, the pseudogap occurs
around ! � 0 and only in regions of the Fermi surface
that are connected to other such regions by wave vectors
that have a broad spread of radius � around �
;
�. The
difference in the location of the pseudogap between hole-
and electron-underdoped cuprates follows by simply find-
ing which points of the Fermi surface can be connected
by �
;
�, within �, to other Fermi-surface points.

Despite the importance of �
;
�, the strong-coupling
pseudogap is not caused by long-range AFM correlations.
Indeed, (i) our lattices do not exhibit long-range order;
(ii) we verified that the results are not very sensitive to t0

(frustration); (iii) Fig. 5 shows that at U > 8t the pseu-
dogap is of order t, only weakly dependent on U and does
not scale as the antiferromagnetic coupling J � 4t2=U, in
contrast with previous studies [16,17]. This pseudogap
would therefore persist in the U ! 1 limit of the
Hubbard model, where hopping between sites is con-
strained by the impossibility of double occupancy
and where t is the relevant energy scale. For a case
where it is possible to study the size dependence of the
strong-coupling pseudogap at fixed doping, we verified
that the results are size independent, suggesting again the
short-range nature of the phenomenon. Longer range
126401-3



FIG. 5. Left: Spectral function for the hole doped system
illustrated in Figs. 2(a) and 3 plotted as a function of energy,
for wave vectors along the direction X � �
; 0� to Z �
�
;
=2�. At U � 2t (top), a depression in the spectral function
is visible slightly away from ! � 0, while the pseudogap is
fully opened at U � 8t (middle). Right: Spectral function for
the electron-doped system illustrated in Figs. 2(b) and 4
plotted along the diagonal of the Brillouin zone, from A �
�0:3
; 0:3
� to B � �0:7
; 0:7
�. The results for the experi-
mentally relevant electron underdoped system are similar.
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correlations at the AFM wave vector might only rein-
force the strong-coupling pseudogap that already exists in
the presence of short-range correlations. The location of
this strong-coupling pseudogap, in both electron- and
hole-doped cases, coincides with the predictions of the
umklapp mechanism [18], which does not need long-
range correlations. However, a proper strong-coupling
extension of the umklapp mechanism is still needed.

Signs of a pseudogap also occur at weak coupling. This
is illustrated by the hot spots that are visible in the
electron-doped case at U � 4t in Fig. 4, upper panel.
Contrary to the U � 8t case, these hot spots (i) are
located precisely at the intersection with the AFM zone
boundary; (ii) they generally correspond to a cluster shape
dependent depression in A�k; !� and not to a genuine
pseudogap. We attribute these results to the short correla-
tion lengths (limited to the cluster size) in CPT and
conclude that we are seeing the onset of the true pseudo-
gap that, as expected from the presence of true gaps in the
itinerant antiferromagnet [19], would be induced by large
AFM correlation lengths [20].We find, as in Ref. [20], that
the interaction strength U cannot be larger than U 	 6t to
preserve this kind of pseudogap where ! � 0 excitations
persist near the diagonal.

Since experiments on optimally doped electron super-
conductors do find large AFM correlation lengths [21] as
126401-4
well as ! � 0 single-particle excitations [8] near the
diagonal, the pseudogap mechanism in this case should
be the weak-coupling one �U & 6t� [19,20]. This value of
U is smaller than, but not too different from, that neces-
sary for a sizable Mott gap at half filling. This may be
understood as follows. The contribution to the value of U
that comes from simple Thomas-Fermi screening scales
similar to �@�=@n�. Figure 1 clearly shows that this
quantity, beginning at U > 4t, is smaller for electron-
doped than for hole-doped systems, demonstrating the
internal consistency of a picture where the value of
U decreases as one goes from the hole-doped to the
electron-doped systems. Reference [20] presents addi-
tional arguments for a smaller U.

In summary, we illustrated two ways in which a Fermi
liquid can be destroyed by a pseudogap and found that a
unified picture of A�k; !� in the cuprates emerges from
the t-t0-t00-U model if we allow U to decrease as the
concentration of electrons increases.
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