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Thermal Diffusion in a Sinusoidal Temperature Field
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Separation of liquid mixtures in a thermal gradient, known as the Ludwig-Soret effect or thermal
diffusion, is governed by a nonlinear, partial differential equation. It is shown here that the nonlinear
differential equation for a binary mixture can be reduced to a Hamiltonian system of equations and that
a solution can be obtained for the linear problem. The calculation gives a closed form expression for the
space and time dependence of the concentration profile of the mixture, valid at short times.
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the total mass of the solution is the sum of the masses of
the two components of the mixture, it follows that the

Eq. (4) that the integral of the density fraction over one
optical fringe is independent of time and, hence, that
The separation of liquid mixtures driven by a thermal
gradient was discovered by Ludwig [1] in 1856, and was
first treated theoretically by Soret [2]. Reviews of the
theory of thermal diffusion, as described by nonequilib-
rium thermodynamics, can be found in Refs. [3,4]; cal-
culations of the magnitude of the effect in gases are
reviewed in Refs. [5,6]. Recently, a new technique based
on the use of crossed laser beams to produce thermal
gradients without the associated problem of convection
has been introduced [7–10]. The method relies on inter-
ference in the electric fields of two phase coherent light
beams to form an optical grating in a weakly absorbing
liquid mixture, resulting in a sinusoidal temperature field
[11]. The spatial distribution of the components of the
mixture resulting from the Ludwig-Soret effect is then
probed by a light beam directed at the Bragg angle to the
optical grating. In this Letter, we discuss solutions of the
partial differential equation that governs thermal diffu-
sion in a one-dimensional geometry with an externally
imposed sinusoidal temperature field corresponding to
the grating experiment. An exact solution to the linear-
ized differential equation without diffusion for the con-
centration profiles of a binary mixture is obtained.

Thermal diffusion in a binary mixture is governed by
the coupled differential equations [4]
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where t is the time, � is the solution density, cP is the
specific heat capacity, � is the thermal conductivity, T is
the temperature above ambient, � is a constant, D0 is the
thermal diffusion coefficient, D is the mass diffusion
coefficient, and c1 and c2 are density fractions of the
species that make up the solution or suspension. Since
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densities satisfy �1 � �2 � �, where �1 and �1 are the
densities of the the two components, and that the density
fractions c1 and c2 add to unity, c1 � c2 � 1. The first
term on the right-hand side of Eq. (1) describes the
Fourier law for heat conduction; the second describes
the production of a temperature change as a result of
imposition of a concentration gradient, known as the
Dufour effect. In Eq. (2) the first term on the right-hand
side describes the Ludwig-Soret effect while the second
describes mass diffusion. If a steady temperature of the
form T � T0�1� sin�Kx��, where T0 is a peak tempera-
ture, K is a wave number determined by the optical fringe
spacing in the grating, and x is the coordinate, is main-
tained in the cell and the Dufour effect is taken as
negligible [4], then Eq. (2) reduces to
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where c2 has been written in terms of c1, and the subscript
1 is dropped from the density fraction c1, where �, known
as the thermal diffusion factor, is given by � � D0T0=D,
and the dimensionless quantities � and z given by � �
K2Dt and z � Kx have been used. If the last term in
Eq. (3) describing diffusion is ignored, then the differ-
ential equation of motion for c�z; t� can be written

@c
@�

� 

df
dz

; (4)

where a ‘‘flux’’ f�c; z� is defined [12] as

f�c; z� � 
�c�1
 c� cosz: (5)

Equation (4) is of the form of a conservation equation that
expresses the buildup of c as a consequence of a gradient
of a flux in space. Since c�	; �� � c�0; �� for a periodic
temperature field, where 	 � 2�=K, it follows from
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Z 	

0
c�z; t� dz � c0	 (6)

for any time, where at t � 0, c0 is the density fraction,
assumed here to be a constant throughout the cell.

Now Eq. (4) written in terms of f becomes
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the solution to which can be found on the characteristic
curve z � ����, where � is a solution to the equation
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That c�����; �� is a solution to Eq. (7) can be seen by
differentiation of c with respect to �, which gives
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provided the equations
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are satisfied. The solutions to Eqs. (10) and (11) are thus
solutions to the one-dimensional Ludwig-Soret problem
without diffusion, as given by Eq. (4). It is noteworthy
that Eqs. (10) and (11) form a Hamiltonian system, analo-
gous to the well-known canonical equations of Hamilton
125901-2
found in classical mechanics, with f taking on the role of
the Hamiltonian function.

Many of the features of the solution to Eq. (3) can be
seen by linearizing f, which gives the profile of the
density fraction for short times or as long as c is small
compared with unity. By replacing f with its lineariza-
tion around the constant state fl given by fl�c; x� �

�c cosz, the canonical equations become
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Integration of Eq. (12) over the range 0 to � gives
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; (14)

which can be solved for sinz and written in a notation that
expresses z in terms of � and the integration constant � as

sin�z��; ��� �
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; (15)

where � corresponds to the value of z at � � 0. A plot of
the characteristic curves that represent the ‘‘natural co-
ordinates’’ of the differential equation is shown in Fig. 1.
Now on a single characteristic curve it is possible to
arrive at z��; �� by going directly from 0 to �, or, to go
indirectly, by first going a time � to z��; �� and then going
for an additional time �
 � to z��; ��; which can be
written

z��; �� � z��
 �; z��; ���: (16)

It thus follows from Eq. (15) that
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cosh����
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which, when solved for sin�z��; ��� by algebraic manipulation, gives
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The second equation of the Hamiltonian system above can be integrated directly to give

c��; z� � c0 exp
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which, upon substitution of Eq. (18) gives
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�

�

Z �

0

tanh����
 ��� � sinz��; ��
1� tanh����
 ��� sinz��; ��

d�
�
: (20)

The integration in Eq. (20) can be carried out to give

c�z; �� �
c0

cosh���� � sinh���� sinz
; (21)
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FIG. 2. Plot of density fraction versus coordinate c�z; �� from
Eq. (21) for c0 � 0:3. The curves are plotted for �� values of 0,
0.6, 1.0, 1.4, 1.8, and 2.0 for the flat curve through the most
peaked curve, respectively. The sinusoidal temperature field
has a temperature maximum at z � �=2 and a temperature
minimum at z � 3�=2.

FIG. 1. Plot of the characteristic curves, z versus �, from
Eq. (15). The temperature maximum and minimum are at
�=2 and 3�=2. The top, center, and bottom curves have values
of � equal to �=3, �=6, and 0, respectively.
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where for the present problem c0��� � c0 and where z has
been substituted for z��; �� in the solution. The solution
for c is plotted in Fig. 2 for a relatively large value of �, as
is sometimes found in particulate suspensions [13]. Note
that Eq. (21) has been derived assuming the nonlinear
term and the effects of mass diffusion can be ignored; as
such, its validity is restricted to short times when
�� � 1; where diffusion is negligible and where
c0 � 1. Under these conditions it is not difficult to
show that the density fraction can be approximated as

c�z; �� ’ c0�1
 �� sinz�; (22)

so that for short times, the profile of the density fraction is
sinusoidal in space.

At the opposite extreme, when � is long, a steady state
is reached where thermal diffusion is counterbalanced by
mass diffusion, so that dc=d� � 0, and Eq. (3) becomes
an ordinary differential equation. A first integral of Eq. (3)
is �c cosz� dc

dz � �, where � is a constant, which, when
evaluated at z � 3�=2, where both cosz and dc=dz can be
taken as zero, gives the value of � as 0. A second inte-
gration of Eq. (3) gives c�z; �� as a constant times an
exponential function of sinz, which, when normalized
over the range 0 to 2�, gives

c�z; � ! 1� �

�
c0

I0���

�
e
� sinz; (23)

where I0 is a modified Bessel function.
Direct integration of Eq. (21) over z shows that the

density fraction conservation law given by Eq. (6) is
obeyed. Additionally, the solution given by Eq. (21) shows
that for � > 0 the density fraction of the first species
increases in the region centered at z � 3�=2, the cold
region of the grating. It is easy to see that under a reversal
of the sign of �, from a positive to a negative quantity,
Eq. (21) becomes c�z; �� � c0�cosh�j�j�� � sinh�j�j�� �
sin�z
 ���
1, which shows that the peak in the density
fraction profile is translated unchanged in shape to the
125901-3
high temperature region of the grating centered at �=2, as
is well known. The identical property of translation in
space under a reversal of the sign of � is found for
Eq. (23), as well.

The derivation of Eq. (21), which provides a rigorous
description of the density fraction spatial profile for the
Ludwig-Soret effect, has been given under the assumption
that mass diffusion and the nonlinear contribution to the
Ludwig-Soret effect can be ignored—both conditions
being valid approximations for small �. The derivation
of Eq. (22) shows that for small ��, the first Fourier
component of the density fraction distribution in space
grows linearly in time as �� � T0K2D0t, which suggests
an experimental method for determining the thermal
diffusion factor. The long time solution to Eq. (3), where
diffusion is included, can be expanded for small �, which
most commonly obtains for solvent mixtures, to give an
expression that is in agreement with those used previously
to determine Soret coefficients experimentally [9]. In
addition to giving an exact solution to the linear problem,
the mathematical method described here provides an
approach to solution to the nonlinear Ludwig-Soret prob-
lem: although the method yields a Hamiltonian system
that is both coupled and nonlinear in c�z; t�, it forms the
basis of a numerical procedure for uncovering the non-
linear dynamics of thermal diffusion. For large values of
�� the linear solution given here quickly becomes
unbounded and demands that on a long time scale the
nonlinearity, which produces shocklike discontinuities in
the spatial profile of the density fraction, be treated fully.
[1] C. Ludwig, Sitzber. Akad. Wiss. Vien Math.-naturw. 20,
539 (1856).

[2] C. Soret, Arch. Sci. Phys. Nat., Geneve 3, 48 (1879).
[3] D. D. Fitts, Nonequilibrium Thermodynamics (McGraw-

Hill, New York, 1962).
125901-3



P H Y S I C A L R E V I E W L E T T E R S week ending
26 MARCH 2004VOLUME 92, NUMBER 12
[4] S. R. deGroot and P. Mazur, Non-Equilibrium Thermo-
dynamics (North-Holland, Amsterdam, 1962). As noted
in this reference the Dufort effect is generally small and
can be ignored.

[5] E. A. Mason, R. J. Munn, and R. J. Smigh, in Advances in
Atomic and Molecular Physics, edited by D. R. Bates
(Academic Press, New York, 1966), p. 33.

[6] R. D. Present, Kinetic Theory of Gases (McGraw-Hill,
New York, 1958).

[7] K. Thyagarajan and P. Lallemand, Opt. Commun. 26, 54
(1978).
125901-4
[8] F. Bloisi, Opt. Commun. 68, 87 (1988).
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