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Polaritonic and Photonic Gap Interactions in a Two-Dimensional Photonic Crystal
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If an ionic material is used in a photonic crystal, the lattice resonance creates a polaritonic gap in the
infrared range. The interaction between a polaritonic gap and the structure gap in a 2D square photonic
crystal is studied by transfer matrix photonic band structure calculations. The polaritonic gap appears
for a surprisingly low volume density of the ionic material. The TM gaps are larger than the TE gaps, as
in the dielectric case. By varying the lattice constant, the structure gaps can be shifted across the
polaritonic gap, and the effects of merging the two gaps can be studied.
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total reflectance for both polarizations at all angles of
incidence.

noted. The top of the ‘‘valence band’’ is depressed by the
capacitive coupling, while the position of the ‘‘conduction
During the past 15 years, a new subfield in photonics or
optics has been created with the advent of photonic crys-
tals, i.e., periodic structures with unit cell dimensions
that correspond to the wavelength of ordinary light. Early
work focused on the possibility to quench optical deexci-
tation by placing an excited atom within a matrix lacking
the final states of the deexcitation process [1,2]. The
continued development benefited from the close analogies
with the established theory for the electronic structure of
ordinary (atomic) crystals. The light line, i.e., the dis-
persion of light in a homogenous solid, develops into a
structure of branches that vary with the direction of the
wave vector in the unit cell. The concepts of solid state
theory such as Brillouin zone, band structure, and, in par-
ticular, energy gaps were readily transferred into this new
area [3]. In particular, the experimental verification of
photonic gaps, i.e., frequency or energy intervals within
which electromagnetic waves cannot propagate in the
periodic structure, created a vivid interest. It is debatable
to what extent the photonic gaps were a fundamentally
novel physical phenomena [4], but the interest was
spurred by the close analogies with electronic structure
and the prospects of optoelectronic applications. In the
gap region, a photonic crystal exhibits total reflectance
and zero emittance which suggests many applications.
Even more possibilities appeared when it was realized
that the defect state in a large enough photonic gap [5]
represents an almost lossless communication channel.
The preparation of photonic crystals, designed with suc-
cessively smaller lattice constants, became a challenge
that has been successfully met, down to near infrared and
even visible wavelengths [6].

Originally, the materials used both in theoretical and
experimental work were nonabsorbing with negligible
dispersion. The impetus of the work was the possi-
bility to make a periodic structure of a high index di-
electric and air totally reflecting. This would be the two-
or three-dimensional analogue of a dielectric multilayer
mirror [7]. This required complete photonic gaps, i.e.,
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At a later stage, the field evolved to study the influence
of absorption and dispersion in one of the material com-
ponents in a photonic crystal. Dispersion introduces a
difficulty with calculational schemes within which the
photon energy/frequency is calculated for a fix wave
vector K, which is typical for the plane wave (PW)
method [3]. Sigalas et al. [8] handled this by using a
multistep, piecewise constant dielectric function. Alter-
natively, one can use the transfer matrix method (TMM)
in which the reverse calculation K � K�!� is made,
permitting the use of a periodic and dispersive dielectric
function

"�R� r; !� � "�r; !�; (1)

where R is a lattice translation in the photonic crystal. By
definition, a band structure is valid for a periodic and
infinite structure. However, the TMM also permits calcu-
lations of transmittance through, and reflectance from,
photonic crystals with an arbitrary finite thickness.

Studies of photonic crystals with metal components
have given very interesting results. The dielectric func-
tion of bulk metals below the plasma frequency is nega-
tive, which shows up as a wide gap in the band structure
[9,10]. It was also demonstrated that the configuration of
the metal had a large influence on the behavior. Using
very fine wires, 1 �m, in a periodic structure, Pendry [11]
showed that the combined result of low effective electron
density, and induction from the magnetic field around the
wires, reduced the plasma frequency with 6 orders of
magnitude. The remarkable effect is that a very low
metallic density periodic grid — visibly transparent —
would be reflective for, e.g., microwaves. Using a multiple
scattering method and including also the absorption of
metals, it was shown that, in spite of the presence of
metallic absorption, the scaling of gap positions holds ap-
proximately. In contrast to Pendry, Sievenpiper et al. [12]
used strong capacitive coupling between metal islands
separated by polyimide, i.e., metal patches on a circuit
board. Also in this case, a wide gap at low frequencies is
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FIG. 1 (color online). The real and imaginary parts of the
model complex dielectric function for beryllium oxide. The
oscillator model energy parameter values of the TO resonance
h�T and the LO resonance h�L are indicated.
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band’’ is controlled by the lattice constant of the metallo-
dielectric lattice.

In this Letter, we report on TMM calculations for a 2D
photonic crystal made up from air and an ionic material
in the Reststrahlen band frequency region, i.e., the ther-
mal infrared. In a Reststrahlen region, the dielectric
function is both negative and strongly dispersive, i.e.,
similar to a metal, due to a TO lattice resonance. How-
ever, the material is optically metal-like only over a
limited frequency interval, !T <!<!L, where !T and
!L are the q � 0 phonon frequencies for the TO- and
LO-phonon branches, respectively. The ionic crystals are
dielectric in the visible range. Furthermore, the material
is nonconducting, electronic induction and screening cur-
rents do not complicate the situation. Our study continues
some of the studies made in Ref. [8] by Sigalas et al. and
it is complementary to very recent work by Huang
et al. [13]. We shall adopt their terminology, i.e., refer
to the gap in the photonic band structure that is directly
linked to the photon-phonon interaction in one material
as polaritonic, and the crystal as such a ‘‘polaritonic
photonic crystal’’ (PPC [13]). When necessary to distin-
guish, we denote the gaps based on the crystalline long
range order as structure gaps. In [13], the electro-optical
materials CsI and LaTiO3 are used as examples of ionic
materials, while we shall use ceramic BeO to illustrate
the effect. 2D photonic crystals with an ionic component
have also been studied with multiple scattering calcula-
tions [14,15].

Our calculations have been made with a transfer matrix
program package OPAL [16], which in cases with disper-
sion has an intrinsic advantage in comparison with PW
methods. The case of dielectric 2D photonic crystals,
including out-of-plane band structure, has been thor-
oughly analyzed by the MIT group [17]. They studied
both square and triangular lattices, with circular cylin-
ders of air or a dielectric (" � 11:43) as a function of r=a,
i.e., the linear density of cylinders. They demonstrate that
square lattices, even with this high contrast, have no
complete photonic gap (in contrast to triangular lattices).
This is primarily caused by the almost absence of TE
gaps, while some TM bands are separated by gaps for a
range of r=a values.

The input values for our calculations, the dielectric
function for beryllium oxide, were obtained from pub-
lished data [18,19]. A single oscillator model was used:

" � "1 �
�"�0� � "1�!2

T

�!2
T �!2 � i!��

: (2)

For the ceramic case, we used an average h�T �
87:0 meV, damping h� � 11:51 meV, and obtained h�L
from "0, "1 � 2:99, and the Lyddane-Sachs-Teller rela-
tion. In Fig. 1, we reproduce the real, "1�h��, and imagi-
nary, "2�h��, parts of the model BeO dielectric function,
as functions of photon energy, h�, with some of the
parameter values indicated. In particular around the reso-
nance, the dispersion is very strong, shifting the "1 values
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from high positive to negative values in an energy interval
width of the order h�. It was shown that this strong
dispersion around !T causes flux expulsion and node
switching, i.e., strong shifts of the mode pattern in the
crystal over a narrow frequency range [13].

In Fig. 2, we show the calculated band structures. The
flat bands of localized modes immediately below !T as
shown in [13–15] are suppressed in our calculations. The
K axis has the usual symmetry point notation for a 2D
Brillouin zone. There are, however, two unconventional
features. The TO phonon resonance introduces a definite
energy into the calculation. Our results are thus not
generic, as in the standard case. We have therefore pre-
ferred to use photon energy in eV, not the usual dimen-
sionless units, on the y axis. More importantly, we have
also included part of the results obtained in the gap
regions, i.e., imaginary wave-vector solutions, Im�K�.
The magnitude of this variable gives information about
the damping in the structure, the inverse of which could
be named a ‘‘photonic skin depth.’’

Considering first the real part, one notices the large
polaritonic gap around 0.1 eV. Not surprisingly, but in
contrast to a dielectric photonic crystal, it is a complete
gap. The stop band effect of a Reststrahlen band is strong
enough, even in the unfavorable case of a square struc-
ture. It is not tied to symmetry effects, so it is not
positioned at a zone boundary. The magnitudes of the
resulting TM and TE gap nevertheless shift with direc-
tion in the structure. The gap in the M-� direction is 30%
larger than that in the �-X direction, as seen from the
band edges in this diagram. The packing density r=a �
0:16 is low, i.e., far from close packed, which occurs for
r=a � 0:5. Just like the structure gaps in Ref. [17], the
polaritonic gap in Fig. 2 is smaller for TE than for TM
123901-2



FIG. 2 (color online). Photonic band
structure for a square lattice of BeO
rods in air with lattice constant a �
6:0 �m and r=a � 0:16. The three sec-
tions to the left give the normal, real
band structure, and the rightmost part is
plotted vs Im�K�.

P H Y S I C A L R E V I E W L E T T E R S week ending
26 MARCH 2004VOLUME 92, NUMBER 12
modes, mainly because the TE ’’valence band’’ is shifted
upwards compared to the lower edge of the TM modes.
Intuitively it is understandable that a horizontal electric
field scatters more weakly off the vertical cylinders than a
vertical field. Beside the appearance of the polaritonic
gap around 0.1 eV, the dispersion in the BeO model, as
shown in Fig. 1, has a strong influence upon the entire
band structure, which has fewer bands with strong dis-
persion in a given energy interval than would a nondis-
persive, purely dielectric crystal have.

We now turn our attention to the Im�K� part of Fig. 2.
These evanescent states do not extend through the crystal,
so they do not obey the Bloch theorem, and are not
limited to a Brillouin zone. Our calculations gave two
types of gap solutions in h� vs Im�K�: loops with moder-
ate K values that are closed across the gaps, and parabolic
shaped curves extending asymptotically to large K val-
ues. It is interesting that the same two types of solutions
were recently observed for the case of electronic tunnel-
ing through a ferromagnet/insulator/ferromagnet junc-
tion [20].

In Fig. 3 we show, to the left, the �-X part of a band
structure for a somewhat higher packing density, r=a �
0:25. To the right, the transmittance spectrum for a 2D
crystal with the thickness 16a is reproduced. We notice a
FIG. 3 (color online). The �-X part of the photonic band
structure for a square lattice of BeO rods in air with a �
5:6 �m and r=a � 0:25. The right panel is the infrared trans-
mittance spectrum for normal incidence in the �-X direction
towards a 16 lattice constants thick crystal.

123901-3
slight increase of the gap width compared with Fig. 2,
which is natural considering the density of the
Reststrahlen material is higher. However, part of this
increase is due to overlap with a structural TE gap. We
shall illustrate these effects more systematically below.
The right-hand panel confirms the efficiency of the stop
band. In this particular case, it is the TE modes that are
effectively blocked over a connected gap with ��=�0 	
0:5, which is a high value compared with what is encoun-
tered in dielectric cases [3]. The TM modes instead have
two disconnected gaps. This can be understood as the
effect of the upward shift of the TE modes noted above.

Next we shall show more complete results for the
variation of photonic gaps as a function of linear packing
density, r=a. In this Letter, we do not have the ambition to
give a complete ‘‘gap map’’ as reported previously for
dielectric 2D crystals [17]. We have chosen a phenomeno-
logically defined ‘‘gap’’ as the energy intervals, within
which the transmittance for normal incidence in the �-X
direction upon a 16 layer photonic crystal is <0:2. In
Fig. 4, we have collected such gap widths for the lattice
constant a � 2:8 �m, as a function of r=a. The closed
and the open symbols distinguish between upper and
lower gap edges, respectively. We can observe the differ-
ent behavior of the polaritonic and structure gaps. The
polaritonic gap is centered on the h�T-h�L interval as
seen in Fig. 1, and grows with increasing r=a, i.e., volume
fraction of BeO. For low r=a values, this gap exists for
lower values than one might have expected, even if there
FIG. 4 (color online). The variation of the polaritonic and
structure gap edges with linear packing density r=a for the
lattice constant a � 2:8 �m. The gaps have been defined as
described in the text by the �-X normal incidence transmit-
tance of a 16 layer photonic crystal <0:2 for (a) TE modes and
(b) TM modes. The closed and the open symbols distinguish
between upper and lower gap edges, respectively.
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FIG. 5 (color online). The variation of the polaritonic and
structure gap edges with linear packing density r=a � 0:25 as
functions of the lattice constant a. The gaps have been defined
as in Fig. 4. The closed and open symbols distinguish between
upper and lower gap edges, respectively. The two diagrams
refer to (a) TE modes and (b) TM modes.
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were some problems to resolve the edges. It is significant
down to r=a 	 0:05, i.e., a volume density <1%. As with
the dimensionless frequency: �!a�=�2�c�; in the nondis-
persive case in Ref. [17], the frequency positions of
structure gaps decrease, with increasing r=a values. We
also observe the existence of an r=a value that maximizes
the width of a structure gap, at a density that is well below
that of close packed. This is in agreement with the behav-
ior of 3D dielectric photonic crystals, e.g., the OPAL

structure should be less than close packed in order to
maximize the structure gap [5].

In Fig. 5, we show the gap width variations as a
function of lattice constant a, for a fixed packing fraction
r=a � 0:25. We notice that the TE structure and polariton
gaps merge for a 	 5:3 �m, while the TM gaps are
separate until a 	 4:4 �m. It is striking to see that,
even before this merging, the lower edge of what was
the polariton gap shifts downwards with increasing a
values. This is a manifestation of structure and polari-
tonic gap interaction that we believe deserves more de-
tailed investigation. Such a study may result in a new tool
for photonic band gap engineering [21]. In this case, the
density of the absorbing material is constant, because r=a
is constant, but the ratio between the rod radii and the
resonance wavelength is increasing. As noted in Ref. [13],
there are good reasons to believe that polaritonic gaps
will appear also in 3D crystals. 3D calculations, however,
in cases with strong dispersion will be quite extensive and
possibly suffer from numerical instabilities.

In summary, we have performed model photonic band
structure calculations for a square 2D photonic crystal of
rods with a Reststrahlen band. This entails strong mate-
rial dispersion and absorption in one component. The
results verify the representation of the frequency range
with a negative dielectric function, as an interval with
only imaginary wave-vector solutions and a large polari-
tonic band gap. By varying the packing density or the
lattice constant, we have demonstrated the interaction
123901-4
between this polaritonic gap, tied to one of the materials,
and a regular photonic gap that is based on optical con-
trast and long range symmetry of the photonic crystal.

We are grateful to Professor John Pendry and
Dr. Andrew Ward of Imperial College London for giving
us OPAL and instructions on how to use it. We have
benefited from several discussions with Dr. Jan
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33, 5975 (1994).

[20] Ph. Mavropoulos, N. Papanikolaou, and P. H. Dederichs,
Phys. Rev. Lett. 85, 1088 (2000).

[21] C.-G. Ribbing and A. Rung, Swedish patent 0104195-3
(2003).
123901-4


