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ContinuousVariable Entanglement using Cold Atoms
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We present an experimental demonstration of both quadrature and polarization entanglement
generated via the interaction between a coherent linearly polarized field and cold atoms in a high
finesse optical cavity. The nonlinear atom-field interaction produces two squeezed modes with
orthogonal polarizations which are used to generate a pair of nonseparable beams, the entanglement
of which is demonstrated by checking the inseparability criterion for continuous variables recently
derived by Duan et al. [Phys. Rev. Lett. 84, 2722 (2000)] and calculating the entanglement of formation
[Giedke et al., Phys. Rev. Lett. 91, 107901 (2003)].
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the relative phases between the strong field and the weak
field exiting the cavity.

polarizations which exhibit maximal EPR-type correla-
tions according to the inseparability criterion (1). We
Entanglement in the continuous variable regime has
attracted a lot of attention in the quantum optics and
quantum information fields in connection with quantum
teleportation, cryptography, quantum computing, and
dense coding [1]. Since the first realization of quadrature
entangled beams by Ou et al. [2], various methods, such
as the ��2� process in optical parametric amplifier (OPA)
[3] or the Kerr effect in optical fibers [4], have been used
to generate nonseparable beams. Recently, the concept of
polarization entanglement, i.e., entanglement of Stokes
operators between two beams, has been investigated by
Korolkova et al. [5], and first demonstrated experimen-
tally by Bowen et al. [6] by mixing two squeezed beams
issued from independent OPAs. The Kerr nonlinearity of
fibers was also exploited by Glöckl et al. to generate a
pulsed source of polarization entanglement [7].

In this Letter, we show evidence for continuous vari-
able entanglement generated using the interaction be-
tween a linearly polarized coherent field and a cloud of
cold cesium atoms placed in a high finesse optical cavity.
We demonstrate the entanglement using the inseparabil-
ity criterion proposed by Duan et al. and Simon [8]. We
generate two kinds of entanglement with the same sys-
tem, quadrature entanglement and polarization entangle-
ment. For this, we use the recently reported generation of
polarization squeezing [9] in the field that has interacted
with cold atoms; both the mean field mode and the vac-
uum mode with orthogonal polarization exiting the
cavity can be squeezed. First, we show how a direct
measurement of the quadrature entanglement of the
beam exiting the cavity can be achieved using two bal-
anced homodyne detections. We then give the form of the
covariance matrix and the associated entanglement of
formation (EOF), which, for Gaussian symmetric states,
is directly related to the inseparability criterion value
[10]. Last, we produce two nonseparable beams by mix-
ing two parts of the previous outgoing beam with a strong
field and achieve polarization entanglement by locking
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First, let us consider two orthogonally polarized
modes Aa and Ab of the electromagnetic field satisfying
the usual bosonic commutation rules �A�; A

y
�� � ���. If

X��
� � �Ay
�ei
 � A�e

�i
� and Y��
� � X��
� �=2� are
the usual quadrature operators (rotated in the Fresnel
diagram by angle 
), Xa � Xb and Ya � Yb are the con-
tinuous variable analogous of the EPR-type operators first
introduced by Einstein, Podolsky, and Rosen [11]. The
criterion of [8] sets a limit for inseparability on the sum
of the operator variances

I a;b�
� �
1
2��

2�Xa �Xb��
���2�Ya �Yb��
��< 2: (1)

For states with Gaussian statistics, Ia;b < 2 is a sufficient
condition for entanglement and has already been used in
several experiments to demonstrate continuous variable
entanglement [5–7]. Moreover, Giedke et al. recently
calculated the EOF of Gaussian symmetric states [10]
and showed it to be directly related to the amount of
EPR-type correlations given by (1).

In our system, an x-polarized beam interacts with a
cloud of cold cesium atoms in an optical cavity. The
experimental setup [9] is shown in Fig. 1. We probe the
atoms with a linearly polarized laser beam detuned by
about 50 MHz in the red of the 6S1=2, F � 4 to 6P3=2, F �
5 transition. The optical power of the probe beam ranges
from 5 to 15 �W. After exiting the cavity, both the mean
field mode Ax and the orthogonally polarized vacuum
mode Ay are squeezed for frequencies ranging between
3 and 12 MHz. An interpretation of these results can be
provided by modeling the complicated 6S1=2, F � 4 to
6P3=2, F � 5 transition by an X-like four-level atomic
structure [12]. When the optical transitions are saturated,
the atoms behave as a Kerr-like medium for the mean
field mode Ax, which can be squeezed. Furthermore, the
orthogonally polarized vacuum mode Ay is also squeezed
on account of cross-Kerr effect, but for an orthogonal
quadrature [9,12].

Our goal is to retrieve the two modes with orthogonal
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FIG. 1. Experimental setup: PBS, polarizing beam splitter;
�=2, half-wave plate; PZT, piezoelectric ceramic; SA, spec-
trum analyzer. T � 0:1 is the transmission of the cavity cou-
pling mirror.
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therefore minimize the quantity Ia;b�
� with respect to
a; b and 
. Expanding (1) yields

Ia;b�
� � h�Ay
a�Aa � �Aa�A

y
a � �Ab�A

y
b � �Ay

b�Abi

� 2�e�2i
h�Aa�Abi � e2i
h�Ay
a�A

y
b i�: (2)

The right-hand side of the first line in (2) is independent
of the polarization basis, while the second line can be
written as 4 cos�2
� 2��jh�Aa�Abij, where 2� is the
phase angle of h�Aa�Abi. Minimizing Ia;b�
� corre-
sponds to maximizing jh�Aa�Abij with respect to a; b.
In order to find the optimal field components a; b, we
introduce another polarization basis u; v, such that
h�Au�Avi � 0. It can be shown that there always exists
such a polarization basis and that the u and v mode
quadrature variances are minimal for the same value of

 [13]. The optimal correlations produced in the system
are directly related to the quantum noise properties of
these modes u; v. Indeed, the maximally correlated
modes a�; b� are

Aa� � �Au � iAv�=
���
2

p
; Ab� � �Au � iAv�=

���
2

p
; (3)

and the minimum value of Ia;b is then given by the sum of
the u; v mode minimal noises

I a�;b� � min
a;b;


Ia;b�
� � min


��2Xu�
� � �2Xv�
��: (4)

Consequently, if one or two of the u; v modes are
squeezed, the value Ia�;b� corresponding to maximal
correlations is equal to the sum of their squeezing.
Experimentally, one has to look for the u- and v-type
modes, a signature of which being that Iu;v�
� does not
depend on 
 [see (2)], and measure their squeezing (if
any). The maximally correlated modes are then given by
(3) and the amount of their EPR-type correlations by (4).
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Let us note that modes u; v are not stricto sensu un-
correlated, since h�Au�A

y
vi can be nonzero. However, one

can think of the correlation properties of modes a�; b� as
being created by the mixing of the u and v modes, as it is
usually produced by mixing two independent squeezed
beams [2,4,6]. Let us stress that this analysis provides a
general framework for finding out the maximal correla-
tions produced in a two-mode system exhibiting quantum
properties. This method is of interest for a class of sys-
tems such as the optical parametric oscillator in which
the correlations are not produced by mixing independent
beams [14].

Coming back to our system, which is symmetrical with
respect to the circularly polarized modes A�, it is easy to
see that h�Ax�Ayi � 0 because Ax and Ay are combina-
tions with equal weights of A�. Since they are squeezed
for orthogonal quadratures, one can set Au � Ax and
Av � iAy, which are now squeezed for the same quad-
rature. Then, using (3), the maximally entangled modes
are the �45� modes to the x; y basis. This gives us the
relevant quantity, I�45;�45�
�, which is to be measured.
Using A�45 � �Ax � Ay�=

���
2

p
, the inseparability criterion

for the �45� modes can be expressed directly in terms of
the x; y mode variances with Xu�
� � Xx�
� and Xv�
� �
Yy�
�:

I �45;�45�
� � �2Xx�
� ��2Yy�
�< 2: (5)

When 
 corresponds to the angle 
sq of the squeezed
quadrature of Ax, both variances are below unity, and
I�45;�45�
sq�< 2.

In order to experimentally check the inseparability
criterion (5), we need to simultaneously measure the
fluctuations of Ax and iAy. After the output of the cavity,
we insert a quarter-wave plate that rotates the noise
ellipsoid of vacuum mode Ay by �=2, the beam is mixed
on a beam splitter with a local oscillator (LO), and the
two resulting beams are sent into two balanced homodyne
detections [Fig. 1]. Thus, we simultaneously measure the
quadrature noise of each beam for the same quadrature.
The sum of these two signals directly gives the sought
quantity I�45;�45�
�. In Fig. 2(b), we plot a typical mea-
surement of I�45;�45 as a function of 
, for an analysis
frequency of 5 MHz. Its minimal value is about 1.9 [1.86
corrected from losses] and corresponds to a case for
which Ax and iAy are both squeezed by about 5%
[Fig. 2(a)]. Quadrature entanglement is thus achieved in
a frequency range given by the cavity bandwidth (3 to
12 MHz).

Consistently with the general method described above,
we also checked that modes Ax and iAy correspond indeed
to u; v-type modes. We therefore measured the quantity
Ix;y in a similar manner as I�45;�45, and verified that it is
independent of 
 [Fig. 2(c)], thus proving that modes
A�45 and A�45 exhibit maximal EPR-type correlations.

Moreover, we note that our measurement not only
demonstrates entanglement, but also quantifies it via the
123601-2
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entanglement of formation. Following Giedke et al. [10],
we introduce the covariance matrix (CM) � for the �45�

polarized modes:

�i;j � h�Ri�Rj � �Ri�Rji=2;

where fRi; i � 1; . . . ; 4g � fX�45; Y�45; X�45; Y�45g. Using
the fact that Ax and iAy are uncorrelated and symmetrical
[see Figs. 2(b) and 2(c)], it is straightforward to show that
the �45� modes have isotropic fluctuations. Choosing

 � 
sq, the covariance matrix can be expressed in the
standard form given in Ref. [10]:

� �

0
BB@

n 0 k 0
0 n 0 �k
k 0 n 0
0 �k 0 n

1
CCA; (6)
FIG. 2 (color online). (a) Quadrature noise spectra of Ax and
iAy, at a frequency of 5 MHz, when the relative phase 

between the LO and the mean field mode is varied in time.
(b) Direct measurement of I�45;�45�
�. (c) Corresponding
measurement of Ix;y�
�.
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with n � �2X�45 � �2Y�45 and k � h�X�45�Y�45i �
h�X�45�Y�45i [15]. As calculated by Giedke et al., the
EOF E, representing the amount of pure state entangle-
ment needed to prepare our entangled state [16], is then
directly related to the inseparability criterion value by
[10]

E � f�n� k� � f�I�45;�45�
sq�=2�; (7)

with f�x� � c��x�log2�c��x�� � c��x�log2�c��x�� and
c��x� � �x�1=2 � x1=2�2=4. For I�45;�45 � 1:86� 0:02,
the EOF is E � 0:014� 0:003.

Last, we show that this quadrature entangled beam
allows to generate polarization entanglement. Polari-
zation entanglement for two beams � and � [5] is
achieved when

IS
�;� � 1

2��
2�S�

2 � S�
2 ���2�S�

3 � S�
3 ��< jhS�

1 ij� jhS�
1 ij;

where the S�;�
i are the standard quantum Stokes opera-

tors. For this, we produce new modes by mixing the A�45

modes studied previously with additional strong fields.
The A�45 modes are obtained from the x; y modes by
passing the beam through a half-wave plate with axes at
22:5�. The fields along the x and y directions are now the
A�45 and A�45 fields, which we will denote by A0

x and A0
y

[see Fig. 3]. The A0
x and A0

y are then spatially separated
with a polarizing beam splitter. In the other input of the
beam splitter, we send a strong field B with a polarization
at 45� from the beam splitter axes, yielding the output
fields By and Bx. The strong field B is similar to the local
oscillator in the previous experiment, except that its phase

B is locked to that of one of the A fields by a servo loop,
as shown in Fig. 3. At the two outputs of the beam splitter,
we have two beams �;� which are the superposition of,
respectively, A0

x and By, and A0
y and Bx. The Stokes

operators S�
i for one of the outputs are then
FIG. 3. Setup for nonseparable beam generation. Inserting the
quarter-wave plates (or not) allows for measuring the fluctua-
tions of S�

3 � S�
3 (or S�

2 � S�
2 ). The servo loop is used to lock

the B field phase to the squeezed quadrature angle.
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S�
0 � A0y

x A0
x � By

yBy; S�
1 � A0y

x A0
x � By

yBy; S�
2 � A0y

x By � By
y A0

x; S�
3 � i�By

y0A
0
x � A0y

x By�:
The Stokes operators S�
i for the other output are obtained

by exchanging A0 and B in the previous expression. Since
the B field is much stronger than the A field, one has
j�Bj � j�A0 j, with �B the amplitude of Bx and By and �A0

the amplitude of A0
x and A0

y. Then hS�
1 i � �hS�

1 i ’
�j�Bj

2 and the inseparability condition reads

I S
�;� < 2j�Bj

2: (8)

In this case, the Stokes parameter fluctuations are related
to those of the initial �45� modes (now denoted A0

x; A
0
y)

�S�
2 � �B�X

0
x�
B�; �S�

2 � �B�X
0
y�
B�; (9)

�S�
3 � ��B�Y

0
x�
B�; �S�

3 � �B�Y
0
y�
B�; (10)

which straightforwardly lead to

IS
�;� � j�Bj

2IA0
x;A0

y
�
B� � j�Bj

2I�45;�45�
B�:

The polarization entanglement condition (8) is thus
equivalent to the inseparability criterion (5) for the
�45� modes when 
B � 
sq. Therefore, quadrature en-
tanglement can be mapped into a polarization basis and
lead to polarization entanglement [6]. Experimentally, we
use the setup shown in Fig. 3 and lock the phase of the B
FIG. 4 (color online). Normalized noises at 5 MHz of S�
2 �

S�
2 (a) and S�

3 � S�
3 (b), the phase 
B being locked with the

value of the squeezed quadrature angle 
sq.
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field with the squeezed quadrature angle. We then succes-
sively measure the S2 and S3 Stokes operator noises using
the appropriate combination [5] of plates and polarizing
beam splitter (PBS). In Fig. 4, we present the normalized
quadrature noises of S�

2 � S�
2 and S�

3 � S�
3 for an analysis

frequency of 5 MHz. This entanglement between the
beams corresponds to a reduction by approximately 5%
in the noise of each variable: IS

�;�=j�Bj
2 � 1:9, consis-

tently with the quadrature entanglement measurement.
From (9) and (10), it is also clear that the CM has the
same form as (6).

In conclusion, we have reported the generation of con-
tinuous variable entanglement via the interaction with
cold atoms in cavity. First, we have developed a method
to directly measure the inseparability criterion [8] and
demonstrated quadrature entanglement between two or-
thogonally polarized modes. The entanglement was
quantified using the entanglement of formation calculated
in Ref. [10]. Second, we achieve polarization entangle-
ment after mapping the quadrature entanglement onto
two spatially separated beams.
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