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The expansion of strongly interacting matter formed in high-energy nuclear collisions drives the
system through the region of phase coexistence. The present study examines the associated spinodal
instability and finds that the degree of amplification may be sufficient for the emergence of spinodal
patterns that may be utilized as a diagnostic of the hadronization phase transition.
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A central goal of high-energy nuclear collisions is to
explore the expected phase transition from the familiar
hadronic world to a plasma of quarks and gluons. This
phase change of strongly interacting matter has often
been assumed to be of first order, with 7, in the range
of 150-200 MeV, but its character (and dependence on
baryon density) is yet to be determined experimentally.

When two heavy nuclei collide at sufficiently high
energies, such as those provided by the BNL Relativistic
Heavy-Ion Collider (RHIC), the matter in the central
rapidity region is formed well above the critical tempera-
ture 7. in a state of rapid longitudinal expansion. The
expansion then causes the energy density € to continually
drop, thus forcing the system through the critical phase
region towards hadronization and subsequent chemical
and kinetic freeze-out. During this evolution the system
maintains local equilibrium and one may employ fluid
dynamics which has the advantage that the equation of
state, p(e), enters explicitly in the equations of motion.

The starting point for the present discussion is the
observation that the occurrence of a first-order phase
transition is intimately linked with phase coexistence
and associated spinodal instability. Indeed, a first-order
phase transition occurs when the appropriate thermo-
dynamic potential exhibits a convex anomaly [1]. There
is then an interval of energy density throughout which
the pressure has a negative derivative, dp/de < 0. This
anomalous behavior identifies the region of spinodal in-
stability where small deviations from uniformity are
amplified, as the system seeks to break its uniformity
and separate into the two coexisting phases consistent
with the given &.

However, in the absence of reliable models for the
transition region, fluid-dynamical studies of nuclear col-
lisions have usually employed the (constant) pressure
describing the phase-separated system, thus suppressing
entirely the spinodal instability (see, for example,
Refs. [2—4]). Employing a simple spline technique to
obtain the approximate form of the anomalous pressure
curve, the present study examines the significance of this
inherent instability and seeks to ascertain the degree to
which it may generate spatial patterns that might offer a
diagnostic tool for probing the phase transition.
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The occurrence of spinodal decomposition in heavy-
ion collisions has already been studied in various con-
texts. At intermediate energies the mechanism appears to
play a key role in nuclear multifragmentation [5], while
studies of spinodal decomposition in high-energy colli-
sions have primarily been carried out in connection with
the chiral phase transition [6—11]. Our present study is
closer in spirit to the recent work by Bower and Gavin
[12] which focuses on the enhancement of baryon fluc-
tuations within a fluid-dynamical framework.

To estimate the behavior of p(e) through the region of
phase coexistence, we employ a cubic spline function to
interpolate between the hadron and plasma phases. As is
commonly done [2—4], we approximate the former phase
by an ideal gas of hadrons, and we take a bag of non-
interacting quarks and gluons for the latter.

In general, the contributions to p and & from a non-
degenerate particle of mass m are

T4 iKn+1 5
pe(m) = ~— V2K (v), (1)
) 27Tzn=l l’l4
0 Kn+1

BrK(v) + K] (2)

T4

o) =553 5
where k = +/— for bosons/fermions and v = nm/T.

The hadronic phase is approximated as an ideal gas of
14 hadronic species i = m, K, m, p,..., N, A, 2, A with
masses m; and degeneracies g; (including antiparticles
where appropriate). Since we are focusing on the central
rapidity region of collisions at RHIC, we assume that all
the chemical potentials vanish, ug = o = us =0,

A A
Phad(T) = Z giPw,(m;),  €naa(T) = Z gi&y,(m;). (3)

The hadronic equation of state is shown in Fig. 1. At the
critical temperature, for which we use 7, = 170 MeV,
the pressure is p, = 79 MeV fm 3, while the energy den-
sity is 5 = 418 MeV fm 3. The slope of p(e) gives the
square of the sound speed at T, (8 pyaa/9€)y = v =0.19.

For the plasma phase, we assume that the system can
be approximated as an ideal gas of quarks and gluons
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FIG. 1 (color online). The equation of state for uniform
strongly interacting matter (solid lines) as obtained by inter-
polating with a cubic spline through the coexistence region
between an ideal hadronic gas for € = gy and a bag with
quarks and gluons for € = g,. The dashed line through the
phase coexistence region represents the pressure of an equilib-
rium mixture of the two phases. The spinodal region extends
between the two extrema of p(e) where uniform matter is
mechanically unstable, dp/de <O0.

confined within a bag of suitable (negative) pressure —B,

L7
Paep(T) = [ g gq}go T + g,p—(my) — “4)

7
D) = [+ g2, [l T+ g0 m) 4B )

The gluons as well as the u and d quarks are taken to be
massless, m,, m, = 0, while the s quark is given a mass of
my, = 150 MeV (though the results would change very
little if it were zero also). The corresponding degeneracies
are g, = 16, g, = 24, and g, = 12.

The plasma pressure starts at —B, while the energy
density starts at B. These quantities increase more rapidly
than their hadronic counterparts and the plasma pressure
overtakes the hadronic pressure at the critical tempera-
ture. This condition determines the bag constant, B'/4 =
246 MeV. The resulting plasma equation of state pq,,(e)
is shown in Fig. 1. The critical energy density of the
plasma is £y = £44,(T.) = 2194 MeV fm 3, so that the
latent heat of the phase transition is Ae =gy — ey =
1777 MeV fm ™. The function pg.,(e) is practically
linear (its slight nonlinearity arises from m,) and it has
the slope (dpggp/de)g = vy = 0.33 at T...

Through the region of phase coexistence we employ a
cubic spline function that matches both the pressure and
its derivative (i.e., the speed of sound) at both ends, p(e) =
pe+ E(e)l(eg — &)v — (e — 8p)vplé(e), where ¢ =
(e —ey)/Aeand &€ = (g — s)/Aa The resulting curve
is shown in Fig. 1. This curve rises initially at e;; with the
slope v%, but it gradually bends over and turns down-
wards. After crossing the mixed-phase line p = p, it
starts bending upwards and finally joins the plasma curve
at g with the slope vQ The crossing occurs at the energy
density ey given by (v} + vQ)sX = vygp T VHEY.

In the cubic spline approximation, the slope dp/de is
parabolic in the phase coexistence region,
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r _ V2 = [1 — 4(2)2}73. (6)
de ' €p — &4 ’

The inflection point in p(e) is at & = 1(ey + £x + &¢)
and its extrema (located at €, and ep) are separated by

NG

€p — 84 = 7[(A8)2 +(ex —&p)* + (gg — ex)?]V2.

)
The steepest slope of p(e) occurs at & and is given by
ap 2 _ 3o 21(88 A\ L
(5) vy = _Z[UH + 'UQ] Tg =~ —0.132.
®)

This value is rather robust against changes in 7. and m.
The & dependence of the sound speed is shown in Fig. 2.

The cubic spline is of course not the only functional
form that joins the single-phase pressure curves smoothly,
and it is adopted here merely as a convenient means for a
rough estimate. The equation of state can be further con-
strained by the demand of thermodynamic consistency,
which can be expressed as a Maxwell-type integral con-
dition. As it turns out [13], this additional condition is, in
fact, very well satisfied by the employed cubic spline, for
the specific scenarios considered here.

The system is regarded as an ideal fluid with no con-
served charges. The energy-momentum tensor 7#" is then
of ideal gas form [14], T*" = (& + p)utu’ — pgh?,
where u* = y(1, v) is the four velocity of the energy
flow, and local conservation of four momentum yields
the basic equations of motion, 9 ﬂT’” =0, i.e.,

V- [(e + p)y*v] )

V(e + p)y?

a[(e + p)y* — pl=

al(e + p)y*v] = v+ pl (10)
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FIG. 2 (color online). The magnitude of the sound speed,
lv,| = |ap/oe|'/?, as a function of & from zero to above the
phase-coexistence region. While v, is approximately constant
in each of the single-phase regions, it drops rapidly as the
metastable phase-coexistence region is entered and becomes
zero at the spinodal boundaries. It is imaginary inside the
spinodal region where the thermodynamical potential is convex
and spontaneous phase separation occurs. In the mixed-phase
scenario v, is zero throughout the entire phase coexistence
region.
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These coupled equations are closed by the specification of
the equation of state p(e).

We now consider a small perturbation on a uniform
static system, (¢, r) = g + Se(t, r) with de(t, r) <K g.
Since the flow speed v is of the order of d&/g, it may be
regarded as small, v < 1, and we may ignore terms of
order v? and thus use y = 1. Then Eqgs. (9) and (10)
simplify,

0=d,e—V-[(e¢ +pv]=09,:6e— (g9 + py)V -,

an

0 = 9,[(s+ pv]—Vp = (gy+ py)d,v — v2Ve,

(12)

where we have used Vp(e(r)) = (dpy/deg)Ve = v2Ve,
with pg = p(gg) being the pressure in the unperturbed
uniform system. The speed of sound was displayed in
Fig. 2. Taking the gradient of (12) and using the derived
relation (11) between d& and v then yields the familiar
equation for the propagation of sound waves, 0?8¢e(t, r) =
(0po/0eg)V?8e(t, ). For harmonic perturbations, & ~
exp(ik - r — iwt), it yields a linear relation between the
wave number and the frequency, w; = vsk. Thus, if a
physical system is brought into the spinodal region
where dpg/deg <0 (such a quenching can be accom-
plished by rapid expansion and/or cooling), the frequency
is imaginary and small deviations from uniformity evolve
exponentially.

The linear dispersion relation becomes unrealistic once
the wavelength of the perturbation, A, = 27/k, has
shrunk to the size of the range of the interaction between
the constituents of the fluid. At such small scales, the
physical justification for employing fluid dynamics is
questionable. However, a physically meaningful treat-
ment can still be made within that framework by employ-
ing a suitable smoothing, as we now explain.

The equation of state p(e) gives the pressure in a
spatially uniform system as a function of its energy
density. When the energy density varies sufficiently gen-
tly with position, one may obtain the corresponding local
pressure as p(r) = p(e(r)); i.e., one may calculate p as if
the energy density had everywhere the same value as at r.
This local-density approximation becomes increasingly
inaccurate as the scale of the spatial variations in &(r) is
decreased, because the finite range of the forces reduces
the response to fine ripples. A simple way to account
approximately for the effect of the interaction range is
to average the pressure over the interaction volume. While
this procedure is, in fact, exact in certain cases (e.g.,
semiclassical one-body models of nuclear systems [15]),
it is adopted here merely as a simple and transparent
approximation which needs ultimately to be justified or
improved on the basis of microscopic models of the
system.

Thus we assume that the local pressure p(r) can be ob-
tained by a convolution with a (normalized) kernel g(r),
p(ry) = [dryg(lry — ry])p(e(ry)). Since the gradient of
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the pressure is proportional to the gradient of the energy
density, a harmonic perturbation ~ exp(ik - r) yields
Vp(r)=(3po/de0)giVe(r) = ikgi(d py/deo)de(r), where
g is the Fourier transform of g(r). Hence the refinement
amounts to simply modulating the local-density term
dpo/ ey in the dispersion relation by g, yielding w; =
(0po/deg)gik?. As a result of this convenient factorized
form, the largest collective frequency occurs at the same
wave number k, for any energy density, thus enhancing
the formation of a distinctive spinodal pattern of a char-
acteristic scale.

The spatial scale of the pattern is determined by the
width of g(r), which one would expect to be in the range
of 0.5-1.0 fm, with the precise value depending on the
specific microscopic treatment. For simplicity, we employ
here a Gaussian form factor, g(r) ~ exp(—r?/2a?), so we
have g, = exp(—a®k*/2). The growth rates 7y, for the
spinodal modes can then be written in a simple form,

Yile) = <_8p>1/2[1 - 4<8_§>2}1/2k6(1/4)“2k2.
de /s Ep — €4

(13)

This dispersion relation is illustrated in Fig. 3.

As the system expands and the energy density traverses
the spinodal region, the growth rate y;(e(z)) of a given
mode increases from zero at ep, exhibits a maximum
at &, and then reverts to zero at £,. The total amplitude
growth factor is then approximately equal to G, =
exp(I'y) where the amplification coefficient is given by
r, = fﬁg vi(e(?))dt = y(8)Aty. The effective time dur-
ing which spinodal instability is encountered is At =
(7/4)(t5 — t,) in the cubic spline approximation. For a
quantitative estimate we use the value t5 — t, = 4 fm/c
gleaned from Ref. [4]. The resulting growth factors G, are
displayed in Fig. 4.

After rapidly reaching a maximum, G(A) subsides
relatively slowly, thus allowing some degree of amplifica-
tion of longer wavelengths. If a = 0.5 fm, the maxi-
mum growth factor of G, = 8 is obtained for A =
2 fm, while a = 0.7 fm yields G, = 4 for A = 3 fm.
The corresponding component of the density-density
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FIG. 3 (color online). The spinodal dispersion relation at the
energy density & where the pressure decreases most rapidly.
Results are shown for three values of the smearing range a.
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FIG. 4 (color online). The factor G, = exp(I';) by which the
amplitude of undulations of wavelength A, = 27/k grows
during the expansion through the spinodal region.

correlation function is proportional to the square of that,
(8e(ry) expliry, - k)S8e(r,)) ~ G2, and can thus reach
quite appreciable magnitudes. (Without the finite-range
modulation factor g; there would be even larger amplifi-
cation, but no characteristic scale would emerge.)

While the linear-response analysis provides the growth
rates and also, when the expansion is invoked, the accu-
mulated growth factors, the net result depends on the
irregularities present as the system enters the spinodal
region and their character and magnitude depend on the
specific model employed. Generally, due to the high tem-
perature in the plasma phase, such irregularities are ex-
pected to be considerable, even though they have usually
been ignored in fluid-dynamical treatments.

Spinodal decomposition is intimately linked to the
occurrence of a first-order phase transition and is impor-
tant in many areas of physics as a mechanism for pattern
formation. In nuclear physics it plays a key role for
nuclear multifragmentation where it gives rise to highly
nonstatistical fragment size distributions with a prefer-
ence for equal masses [5]. Focusing here on high-energy
nuclear collisions, we have investigated the importance of
spinodal decomposition while the expanding matter had-
ronizes. Working within the framework of relativistic
fluid dynamics and basing our analysis on commonly
employed assumptions about the equation of state, we
have found that a significant degree of amplification
may occur as the matter passes through the mechanically
unstable region of phase coexistence.

Such an onset of spinodal decomposition may have
interesting dynamical consequences, most notably the de-
velopment of characteristic patterns in the energy density,
as the most rapidly amplified wavelengths grow predomi-
nant. The spatial scale of any such emerging spinodal
pattern could, in principle, be probed by suitable correla-
tion analyses. It is also conceivable that the azimuthal
multipolarity of the favored modes would be reflected in
the flow coefficients v, (of which the best explored is v,
quantifying the elliptic flow [16]). Investigation of these
prospects would clearly be interesting.

If the appearance of spinodal patterns could, in fact, be
examined experimentally, one could obtain fairly direct
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information on the equation of state in the critical region,
since the relative prominence of various scales would
reflect the degree of spinodal instability encountered by
the corresponding wavelengths. Conversely, if the ab-
sence of such patterns can be established it may be con-
cluded that no spinodal region has been encountered and,
consequently, the phase transition cannot be of first order.

In view of the potential utility of spinodal decomposi-
tion as a diagnostic tool, it would seem worthwhile to
pursue this issue with more realistic dynamical treat-
ments that take better account of the spatiotemporal
features of the system (including both the rapid longitu-
dinal expansion and the finite transverse extent which
may affect the present simple estimates). In particular,
the quantitative importance of spinodal decomposition
could be elucidated with existing fluid-dynamical models
that have been modified to admit an equation of state
containing the convexity anomaly which is a character-
istic feature of first-order phase transitions.
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