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Universal Decoherence in Solids
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Symmetry implications for the decoherence of quantum oscillations of a two-state system in a solid
are studied. When the oscillation frequency is small compared to the Debye frequency, the universal
lower bound on the decoherence due to the atomic environment is derived in terms of the macroscopic
parameters of the solid, with no unknown interaction constants.
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The problem of tunneling and coherence in the pres-
ence of dissipation has been extensively studied in the
past; see, e.g., the review of Leggett et al. [1]. In this
Letter we revise the case of quantum oscillations of a
particle (an electron, an atom, or a defect) in a double-
well potential in a solid in the presence of weak dissipa-
tion due to the nonconducting atomic environment. We
demonstrate that all previous works on this subject have
missed two important facts. The first fact is that the
double-well potential formed by the local arrangement
of atoms in a solid is defined in the coordinate frame of
that local atomic environment, not in the laboratory
frame. The second fact is that the interactions of the
tunneling variable with phonons must be invariant with
respect to global translations and rotations. When these
facts are taken into account, a simple universal result for
the decoherence rate can be obtained.

Let the degenerate minima of the double-well potential
be located at the pointsX0 and �X0 inside the solid. In the
case of weak dissipation, if, at the moment of time t � 0,
the particle is prepared in the state X � X0, then for any
moment t > 0

hX�0�X�t�i � X2
0e

��t cos�!0t�; (1)

where h� � �i means quantum average, �h!0 � � is the
tunneling splitting, and � � !0 is the decoherence rate.
When addressing the effect of dissipation one should
answer two questions: (i) how is � renormalized by the
atomic environment? and (ii) what is the value of �? The
answer to the first question requires the precise knowl-
edge of the interactions with the environmental degrees
of freedom. After the latter are integrated out from the
total action [2], � can be computed via the instanton of
the remaining effective action for the tunneling variable
[3,4]. For the Ohmic interactions, � can be nicely ex-
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pressed in terms of a single measurable dissipation con-
stant [4]. In this Letter we show that a similar beautiful
result follows for the decoherence due to the super-Ohmic
interactions with phonons. In the limit when !0 is small
compared to the Debye frequency, !D, the decoherence
rate � can be expressed in terms of measurable constants
of the solid, with no unknown interaction constants.
Similar results for problems involving tunneling of the
angular momentum have been obtained earlier [5,6]. Here
we present a rigorous derivation of the universal expres-
sion for � due to phonons for an arbitrary double-well
potential in a solid.

The Hamiltonian of the system is

H �
1

2
m _RR02 	U�R� 	 
iklmRiRkulm�R� 	 � � �

	
Z
d3r

�
1

2
� _uu2 	 �iklmuikulm

�
; (2)

where R0 and R are the radius vectors of the particle of
mass m in the laboratory coordinate frame and in the
coordinate frame rigidly coupled with a solid, respec-
tively, U�R� is the double-well potential, u�r� is the pho-
non displacement field, uij �

1
2 �@iuj 	 @jui� is the strain

tensor, � is the mass density of the solid, �iklm is the
tensor of elastic coefficients, and
iklm; . . . are coefficients
of the expansion of the long-wave interaction between R
and u into a series on uij. The invariance of the inter-
action with respect to the translation [u�r� ! u�r� 	 a]
and rotation [u�r� � �� r] of a solid as a whole rules out
combinations of the forms R � u and R � r� u. All
interaction terms, therefore, must be even in the number
of the spatial components of R. Our result is based, in
part, upon this observation. Another important observa-
tion is that the kinetic energy of the particle depends on
_RR0, while the potential energy depends on R. Substituting
R0 � R	 u into Eq. (2), one obtains
H �
1

2
m _RR2 	U�R� 	m _RR � _uu�R� 	 
iklmRiRkulm�R� 	 � � � 	

Z
d3r

�
1

2

�	m��r�R�� _uu2 	 �iklmuikulm

�
: (3)

The renormalization of the mass density in Eq. (3) is totally insignificant in the long-wave limit (see below), but the
presence of the effective dynamic interaction, m _RR � _uu, which is linear in the tunneling variable, is absolutely crucial for
our argument.
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In this Letter we treat the renormalized value of � as a
known parameter that can be obtained from experiment.
We start with a symmetric double-well potential. Let the
two degenerate minima ofU�R� be R � �R0, so that the
ground state and the first excited state of the particle are

j0i �
1���
2

p �jR0i 	 j �R0i�;

j1i �
1���
2

p �jR0i � j �R0i�:

(4)

We assume that the energy gap, �, between these two
states, renormalized by the environment, is small com-
pared to the distance to other energy levels of the particle.
Our goal is to compute the decoherence of the low-energy
states, j i � C1j0i 	 C2j1i, due to the decay of j1i into
j0i, accompanied by the emission of a phonon of fre-
quency !0 � �= �h. In the limit when !0 � !D, the pho-
non wavelength is large compared to the interatomic
distance, which justifies the use of the long-wave limit
of the elastic theory. To simplify calculations, we also
assume that the tunneling distance, 2X0, is small com-
pared to the wavelength of phonons of frequency !0.
Writing R0 as �X0; 0; 0�, one has X̂Xj�R0i��X0j�R0i,
while ŶYj �R0i � ẐZj �R0i � 0. Consequently, X̂Xj0i �
X0j1i and X̂Xj1i � X0j0i, while ŶY and ẐZ produce a zero
result when acting on j0i and j1i. It is now easy to see that
any combination of the even number of operators X̂X, ŶY,
and ẐZ, including X̂X2, etc., has a zero matrix element
between j0i and j1i. Thus, the only decohering term in
Eq. (3) is m _̂XX_XX _̂uu_uux, with

h0j _̂XX_XXj1i � h0j
i
�h
�ĤH X̂X�X̂X ĤH �j1i � �i!0X0; (5)

where it is explicitly implied that j0i and j1i are the
approximate eigenstates of the full Hamiltonian, so that
� � h1jĤH j1i � h0jĤH j0i is the tunneling splitting renor-
malized by the interactions.

We first consider the case of zero temperature. The
T � 0 decoherence rate is given by the Fermi golden rule:

� �
2 
�h

X
i�j

hijm _̂RR_RR � _̂uu_uujjihjjm _̂RR_RR � _̂uu_uujii��Ei � Ej�

�
2 
�h
m2jh0j _̂XX_XXj1ij2

X
k;i

jhk; ij _̂uu_uuxj0phij2�� �h!ki � ��;

(6)

where j0phi and jk; ii are the states of the solid with zero
phonons and one phonon of the wave vector k and polar-
ization i respectively, and !ki � cik is the phonon fre-
quency, with ci being the speed of sound of the
polarization i. The canonical quantization of the phonon
field [7] yields

_̂uu_uu x �
�i����
V

p
X
k;i

�����������
�h!ki

2�

s
�akie

ikr � aykie
�ikr�exi ; (7)
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where V is the volume of the system, ayki and aki are
operators of creation and annihilation of phonons, and ei
are unit polarization vectors. Substitution of Eqs. (5) and
(7) into Eq. (6), with account of h�exi �

2i � 1=3, gives

� �
 m2X2

0!
2
0

3 �h�V

X
k;i

!ki��!ki �!0�: (8)

Replacing the summation over k by V
R
d3k=�2 �3 one

obtains

� �
m2X2

0!
5
0

6 �h�

�
2

c3t
	

1

c3l

�
; (9)

where ct and cl are the speeds of the transversal and the
longitudinal sound, respectively.

The following observation allows one to understand the
above result in simple physical terms. Up to a numerical
factor of order unity, � of Eq. (9) satisfies

�h�� p2
0=2M; (10)

with p0 � mX0!0 being the rms value of the momentum
of the oscillating particle and M � ��3 being the mass
of the solid within the volume of dimensions �, where � is
the wavelength of phonons of frequency !0, averaged
over polarizations. This volume of the solid adjacent to
the particle must oscillate together with the particle in
order to conserve the linear momentum. The latter is a
consequence of the commonly neglected fact that the
potential U�R� is formed by atoms that are coupled to
the rest of the solid, which makes the double well a part of
the dissipative environment. The p2

0=2M width of the
excited state is, therefore, a consequence of the conserva-
tion law that mandates the entanglement of the particle
states with the states of the solid.

The super-Ohmic case has been studied in Ref. [1],
based upon the spin-boson Hamiltonian,

H SB � ��0ŝsx 	 X0ŝsz
X



C
x


	
X



�
p2



2m

	

1

2
m
!2


x2


�
: (11)

Here ŝs is the spin-1=2 operator, �0 is the bare splitting, 

labels coordinates x
, momenta p
, frequencies !
, and
masses m
 of harmonic oscillators, and C
 are constants
of the linear coupling between the macroscopic variable X
and the oscillators. The following result was obtained for
the decoherence rate [1]: � � �X2

0=4 �h�J���, where
J�!� �

P

� C

2

=2m
!
���!�!
� and � is the renor-

malized splitting. This, of course, is a correct answer to
the mathematical problem posed by Eq. (11). According to
Ref. [1], for a nonlinear coupling of the form F
�X�x
, the
quantity C
 in the above formulas should be replaced by
X�1
0 
F
�

1
2X0� � F
��

1
2X0��. Then, when only even

powers of X in F
�X� are allowed by symmetry, the result
for the decoherence rate is zero. As we have seen above, in
a physical problem of quantum oscillations of a particle or
120405-2
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a defect in a double-well potential in a solid the linear
coupling of the tunneling variable to the phonons is
prohibited by symmetry, unless one identifies the cou-
pling with the Galilean transformation term m _RR � _uu and
chooses C
 / !2


.We, therefore, conclude that in relevant
physical problems the only correct answer for � is given
by Eq. (9). The beauty of this answer is that it does not
depend on any unknown interaction constants but is ex-
pressed in terms of measurable parameters only.

We now generalize our answer to include the case of
an asymmetric double well and finite temperature. We
start with the first and assume that the energy minima
of U�R� are shifted with respect to one another by a
small energy +. The origin of the coordinate system can
always be chosen such that these minima correspond to
R � �R0, with R � �X0; 0; 0�. The relevant two-state
Hamiltonian of the particle is

h � ��ŝsx 	 +ŝsz: (12)

The solution of the corresponding Schrödinger equation
yields

j0i �
1���
2

p �C�jR0i 	 C	j �R0i�;

j1i �
1���
2

p �C	jR0i � C�j �R0i�;

(13)

where

C� �

�����������������������������������
1� +=

�����������������
�2 	 +2

pq
: (14)

The energy gap between these states is

�h! �
�����������������
�2 	 +2

p
: (15)

It is easy to see that the states (13) are still the eigenstates
of X̂X2, as for + � 0, so that h0jR̂RiR̂Rjj1i � 0, as before.
Among terms in Eq. (3) which are linear in R̂R, the matrix
element responsible for the decoherence continues to be

h0j _̂XX_XXj1i � �i!X0C	C� � �i!0X0; (16)

which is independent of +. The phonon part in Eq. (6),
however, must be modified by replacing � with the full
gap, �h! �

�����������������
�2 	 +2

p
, in the � function. At a finite tem-

perature one should sum up the transitions between the
initial state, j1i, with nki phonons and the final state, j0i,
with nki 	 1 phonons, or vice versa for the transition
j0i ! j1i. This gives

� �
 m2X2

0!
2
0

3 �h�V

X
k;i

!ki�2nki 	 1���!ki �!� (17)

instead of Eq. (8). The integration over the phonon modes
must be accompanied by thermal averaging over the
number of phonons, with hnkii � 
exp� �h!ki=T� � 1��1.
The final answer for a biased double well at T � 0 reads

� �
m2X2

0!
2
0!

3

6 �h�

�
2

c3t
	

1

c3l

�
coth

�
�h!
2T

�
: (18)
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Once again we emphasize that it does not contain any
unknown interaction constants. The effect of the interac-
tions has been entirely absorbed into the renormalized
splitting, �h!0.

Among various tunneling problems, the problem
studied above is relevant to the width of a low-energy op-
tical mode that corresponds to quantum oscillations of an
atom between two isomeric positions in the unit cell of a
crystal. It describes a kind of an ammonia-molecule ar-
rangement of atoms embedded in a solid. For, e.g., an
atom of mass m�3�10�23 g, oscillating at!0�1012 s�1

in a symmetric double well with X0 � 2� 10�8 cm in a
crystal with �� 5 g=cm3 and ct � 105 cm=s< cl at T <
�h!0, the width given by Eq. (18) is of the order of
1010 s�1. For tunneling of electrons, the effect is gener-
ally small due to the smallness of the electron mass. One
should remember, however, that � of Eq. (18) represents
the ultimate lower limit of the decoherence rate which is
mandated by the conservation law.

To have a complete picture we show how the above
treatment of the particle problem can be transformed to
include the problems of the decoherence of quantum
oscillations of the angular variable, e.g., spin or an orbital
moment. This problem is relevant to tunneling of the
magnetic moment of a molecule between up and down
directions in a crystal field [5,8]. Here we give its general
solution in the presence of a bias field.When the tunneling
variable is the angular momentum L, the potential U�R�
in Eq. (3) must be replaced with

H 0 � .ikLiLk 	 .0
iklmLiLkLlLm 	 . . . ; (19)

where .ik; .0
iklm, etc., are tensors determined by the sym-

metry of the crystal. The analogy with the particle prob-
lem is that L in Eq. (19) is the angular momentum in the
coordinate frame coupled to the local crystal axes.

Rotations of L with respect to the crystal axes couple
to the transversal phonon modes satisfying r � u � 0.
Consequently, _uu�R� can be written as 
�R, with

 given by 
 � 1

2r� _uu. This allows one to write
m _RR � _uu�R� in Eq. (3) in terms of the angular momentum,

m _RR � _uu�R� � �R�m _RR� �
 � L �
 � 1
2L � �r� _uu�:

(20)

While this equation has been derived for L of an orbital
nature, it must equally apply to a spin. One comes to this
conclusion by considering the effect of the rotation in a
stationary coordinate frame which axes are determined
by the local crystal field at the location of the spin. The
rotation of that frame due to a transversal phonon is
equivalent to the magnetic field, which results in the
same effective interaction with the spin as it is for the
orbital moment.

The other interactions of L with the phonon field are of
the magnetostriction form,

H int � 
iklmLiLkulm�R� 	 � � � : (21)
120405-3
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In the absence of the external field, the symmetry with
respect to the time reversal requires that all terms in
Eq. (21) contain an even number of L components. The
external field, H, adds the Zeeman term �0L �H to the
Hamiltonian, with 0 being the gyromagnetic ratio. Thus,
the total Hamiltonian becomes

H �.ikLiLk 	 .0
iklmLiLkLlLm 	 � � � � 0L �H

	
1

2
L � 
r� _uu�R�� 	 
iklmLiLkulm�R� 	 � � �

	
Z
d3r

�
1

2
� _uu2 	 �iklmuikulm

�
: (22)

The main difference of the quantum problem for L
from the quantum problem for R is that different com-
ponents of the operator L̂L do not commute with each
other. For certainty, we study the situation when the
classical energy minima of the potential correspond to
the classical vector L looking in one of the two directions
along the Z axis. This could be, e.g., the case of a biaxial
crystal field and a weak magnetic field applied along the
Z axis, H 0��.zL

2
z	.xL

2
x�0LzHz, with .z;.x > 0.

At .x � 0 the jLi and j � Li eigenstates of L̂Lz would
coincide with the eigenstates of H 0. Since L̂Lz does not
commute with L̂Lx, any small .xL2

x term mixes these
states:

j0i �
1���
2

p �C�jLi 	 C	j � Li�;

j1i �
1���
2

p �C	jLi � C�j � Li�;

(23)

where C� are given by Eq. (14) with + � 20LH.
As in the particle problem, the effect of the interactions

in Eq. (22) on the states j0i and j1i of Eq. (23) is twofold.
First, interactions renormalize � in the expression for the
energy gap, Eq. (15). Second, they generate the finite
width of j1i due to the finite probability of the decay
j1i ! j0i. The latter, as in the particle problem, must be
considered with an account of the symmetry of Eq. (22).
In the quantum problem the products of the L components
in Eq. (22) must be replaced by the symmetric combina-
tions of the L̂Li operators in order to preserve the
Hermitian property of the Hamiltonian, e.g., LiLk !
1
2 �L̂LiL̂Lk 	 L̂LkL̂Li�, or, equivalently, the symmetry of the
tensors .ik, etc., with respect to the transposition of
indices must be enforced. It is then easy to see that
h0j�L̂LiL̂Lk 	 L̂LkL̂Li�j1i � 0. This is true for any combination
of the even number of the operators L̂Li. Thus, the only
term in Eq. (22) responsible for the decoherence of quan-
tum oscillations between L and �L is 1

2L � 
r� _uu�R��,
which is independent of any interaction constants.
Consequently, the relevant matrix element of the operator
of the angular momentum is

h0jL̂Lzj1i � LC	C� � L!0=!; (24)
120405-4
and

��
 

2�h2
jh0jL̂Lzj1ij

2

�

�X
k;i

jhnki	 1j�r� _uu�zjnkiij2��!ki�!�
�
T
; (25)

where h� � �iT means thermal average. Substituting here
the quantized phonon field of Eq. (7), one obtains

� �
L2!2

0!
3

12 �h�c5t
coth

�
�h!
2T

�
; (26)

which is the angular equivalent of Eq. (18). This formula
generalizes the result of Ref. [5] obtained for H � 0. It
contains no unknown interaction constants, the same as
Eq. (18).

As in the coordinate tunneling problem, it is interesting
to notice that atH � 0 and T � 0, Eq. (26) can be written
as �h�� L2=2I, where I � ��5 is the moment of inertia of
the part of the solid of dimensions �� 2 ct=!0, adjacent
to the particle (molecule) whose angular momentum
tunnels between L and �L. Thus, the physical origin of
the decoherence given by Eq. (26) is the entanglement of
the angular states of the particle (molecule) with the
angular states of the solid, required by the conservation
of the angular momentum.

In conclusion, we have studied quantum oscillations in
a double well coupled with a solid. When the oscillation
frequency is small compared to the Debye frequency, the
decoherence due to phonons is given by the universal
formula which contains only directly measurable pa-
rameters. It provides the ultimate lower limit for the
decoherence rate, mandated by the invariance with re-
spect to global translations and rotations.
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