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Nonspreading Wave Packets in Three Dimensions Formed
by an Ultracold Bose Gas in an Optical Lattice
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We predict that an ultracold Bose gas in an optical lattice can give rise to a new form of condensation,
namely, nonspreading 3D wave packets that reflect the symmetry of the Laplacian with a negative
effective mass along the lattice direction and are allowed to exist in the absence of any trapping
potential even in the limit of noninteracting atoms. This result also has strong implications for optical

propagation in periodic structures.
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Matter waves are a natural manifestation of large scale
coherence of an ensemble of atoms populating a funda-
mental quantum state. The observation of Bose-Einstein
condensates (BECs) in dilute ultracold alkalis [1] has
initiated the exploration of many intriguing properties
of matter waves, whose mascroscopic behavior can be
successfully described via a mean-field approach in terms
of a single complex wave function with a well defined
phase across the atom cloud [2]. Large scale coherence
effects are usually observed by means of 3D magnetic or
optical confining potentials (also 1D cigarlike or 2D disk-
shaped BECs are possible [3]) in which BECs are de-
scribed by their ground-state wave function. Trapping can
also occur in free space (i.e., without a trap) through the
mutual compensation of the leading-order (two-body)
interaction potential and kinetic energy, leading to bright
(dark) solitons for negative (positive) scattering lengths.
This phenomenon, however, has been observed only in 1D
[4]. In 2D and 3D, free-space localization cannot occur
due to collapse instability of solitons, and even in a trap
collapse usually prevents stable formation of BEC [5,6],
needing stabilizing mechanisms [7].

A lot of attention was also devoted to periodic poten-
tials due to optical lattices [8], where the behavior of
atoms mimic those of electrons in crystals or photons in
periodic media [9] and exhibit effects which stem from
genuine atom coherence [10]. In 1D (elongated) lattices
bright (gap) solitons can form also in the presence of
repulsive interactions [11]. In this Letter we predict that
a novel trapping phenomenon occurs when the full 3D
dynamics is retained in a 1D lattice. Specifically, under
conditions for which the Bloch state associated with the
lattice has a negative effective mass, the natural state of
BECs is a localized matter X wave characterized by a
peculiar biconical shape [12—16]. The atoms are organ-
ized in this way in the absence of any trap, solely as the
result of the strong anisotropy between the 1D modula-
tion and the free motion in the 2D transverse plane.
Furthermore, due to axial symmetry, the atoms can ex-
perience a collective motion with given velocity along the
lattice, resulting in wave packets traveling (nearly) un-
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distorted. Remarkably, matter X waves constitute also a
general basis of expansion for physically realizable
BECs, whose evolution preserves the initial atom number
distribution.

We start from the mean-field Gross-Pitaevskii (GP)
equation [2] with an optical standing wave potential
and no additional trapping potential [we set  =h*/(2m)]

ihd,p = — V2 + 4Tsin?(kz/2) + aly>y = 0. (1)

We assume axial symmetry around z and decompose
the wave function ¢ = ¢(r,z, 1) (> = x> + y?)
into its forward and backward components as
W = [y, 2, 1) explikz/2) + Py (r, 2, 1) exp(—ikz/2)] X
expli(k* — 8I')t/4l]. For ¢, varying slowly in z, drop-
ping rapidly rotating terms, the GP equation (1) reduces
to the coupled equations

Lo+ Ty, — allysl* + 204Dy = 0,
L iy + Ty — allpp* + 214, 1P)p, = 0,

where L. =ihd, *inko, + V3, and V3 =
02+ r~19,. In the linear limit a = 0, the plane-wave
[exp(ikz — iEt/h)] linear dispersion relation associated
with Egs. (2) has two branches E = E. (k) = =I'\/1 + p?
(we set p = kkm/I'), exhibiting an energy gap of width
2I'. The coupling between ¢, and ¢, causes the structure
to be strongly dispersive near the band edge and the linear
dynamics of atoms to be governed by strong Bragg re-
flection. Nevertheless, in the 1D limit (n = 0), where
Egs. (2) were obtained previously [11], the nonlinearity
(both attractive a < 0 and repulsive a > 0) induces self-
transparency mediated by a two-parameter family of
moving bright gap solitons, so-called because they exist
in the gap seen in the soliton moving frame [17]. In the
attractive case, one might think that the nonlinearity can
balance also the kinetic transverse term V| leading to
bell-shaped 3D atom wave packets [18]. We show in the
following that, contrary to this expectation, close to the
lower band edge E = E_, the atomic wave function
takes a completely different form. To this end we apply
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a standard envelope function (or effective mass [19])
approximation [20], searching for spinor solutions ¢ =
[, ]" of the form

g = ed(er, ez, et)f_ expliz — itE_/F) + O(€?), (3)

where € is a small expansion parameter, ¢ is slowly
modulating the Bloch state with amplitude ¢_ =
[;—p—]" [eigenvector of Eqs. (2) with a =0 corre-
sponding to the eigenvalue E_]. At the leading order we
find that ¢ obeys the following asymptotic equation:

ihd, ¢ +iE_9.¢ + E"02¢ + nV3i ¢ — xloI*d =0,
4

where y = %3112;2, and E. = %, E! = % account for
dispersion. For the sake of simplicity we deal henceforth
with the strict band-edge case k = 0, which can be pre-
pared by acting on the wave number and on the potential

parameter [21]. In this case Eq. (4) reads explicitly as

: R (g _m ., 3a o

o b+ 5 (Vi ~ oo~ Sleko =0, (5)
where —m, = —mI'/(nk?) is the negative effective mass
associated with the lattice, in turn determining the hyper-
bolic character of (GP) Eq. (5). The scaling transforma-
tion z,rt, ¢ — 20z ror, fot, cop  with  rj = Zm,/m,
to = 2m,z3/h, c3 = 2i/(3lalty), zo being a length scale,
allows us to use dimensionless variables.

We look for stationary (shape-preserving) solutions of
Eg. (5) in the form ¢ = ¢(r, z) exp(iut).

According to Ref. [22], solutions that are strictly local-
ized (i.e., with finite 3D norm ||¢|| = {(¢|¢) [23]) do not
exist. Nevertheless, Eq. (5) possesses, in the attractive
case (a < 0), X-shaped solutions with slower than expo-
nential decay (infinite norm, yet localized in a broader

sense [12]), namely, matter X waves [16]. X waves, known

FIG. 1 (color online). Surfaces of constant envelope atom
density |@|> (increasing with darkness, or in color in the
following order: bronze, red, and blue) of a matter envelope
X wave solution (u = 0) of Eq. (5). The insets show on axis
(r = 0) and off axis (r = 7) longitudinal profiles of the overall
(l]?, thin lines) and envelope (|¢|?, bold lines) densities. Here
we set zg = 10/k.

120404-2

in optics [12], acoustics [13], or microwaves [14], as non-
spreading (in space and time) solutions of the linear
Helmotz wave equation [15], have been only recently dis-
covered for Schodinger-type models [such as Eq. (5)] re-
lated to the so-called paraxial regime of propagation [16].
A fundamental difference must be emphasized: while an
optical or acoustic field retains a directly observable spa-
tiotemporal X shape [12,16], in the case of a Bose gas, the
local density of atoms || has an X-shaped spatial enve-
lope | ¢|?> which modulates a periodic (with lattice period)
term cos®(kz/2) owing to beating between i, and i,
components (in other words, an atomic Bloch wave).

To assess further the regimes of observability of mat-
ter X waves, we discuss two crucial issues. First, by
extending the analysis of Ref. [16], we are able to show
that X wave solutions of Eq. (5) exist also in the (far
more common) case of repulsive nonlinearity (a > 0).
As an example, we display in Fig. 1 the atom density
corresponding to the stationary solution with eigen-
value p = 0, which shows a dense core accompanied
by biconically shaped regions of lower density. As
shown in the insets, the signature of the X shape is a
single peak on axis (r =0) and a double peak off
axis (r # 0). The envelope |¢|? exhibits also slow oscil-
lations and modulates the fast sinusoidal variation of the
density |i|?. In real-world units, the density scales with
c3 = h?/(3lalm,z3). For instance, the peak density in
Fig. 1 (~0.15) yields 1 atom/um? in 3'Rb (scattering
length a, = a(m/4h*) ~ 6 nm) with a length scale z, =
10/k ~ 1 uwm associated with a typical lattice pitch
27r/k ~ 700 nm.

Second, our aim is to show that nonspreading atom
X-shaped BECs can be formed also in an ideal noninter-
acting gas (a = 0, realizable by exploiting Feshbach
resonance [4]). This is in contrast with other known set-
tings where BECs need either a confining potential (as in
pioneering experiments [1]), or nonlinearities to balance
kinetic spreading. Ultimately, this stems from the fact that
X waves have a finite linear limit, unlike solitons of
standard (elliptic) GP equation whose amplitude vanishes
as a— 0. To show the importance of linear matter
X waves, however, we need to address their observability
with a finite number of atoms (i.e., finite norm). To this
end, we start by solving Eq. (5) witha =0

(i, + V2 — 82)p = 0, (6)

seeking for shape-preserving solutions of the kind (i.e.,
generalized to move with velocity v)

¢(r,z, 1) = o(r, ) exp(—ivz/2 + irv?/4),  (7)
where { = z — vt, and ¢ turns out to obey the equation
o+ r oo — a§¢ = 0. (8)

The general solution of Eq. (8)
0.0 = [ " fafaneida ©)
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represents a class of envelope X waves specified by their
spectrum f(a), which generalize to (Schrodinger-type)
Egq. (6) the X wave solutions of the Helmotz equation [15].
An exponentially decaying (with arbitrary inverse width
A) spectrum f,(a) = exp(—aA) yields the simplest (or
fundamental) X wave ¢, = [r2 + (A — i£)*]~'/2, while
) — gn exp(—aA) (n = 1,2,...) defines the derivative
X waves go< " — =d"¢,./dA". In general, from Eq. (9), we
obtain the full envelope X wave solution of Eq. (6) as

o,z 1) = fw f(a)JO(ar)ei[a_(U/Z)]Z+i[(vz/4)_av]lda,
0
(10)

where |¢|? travels clearly undistorted along z. However,
we face the pitfall that these X waves do not represent
physical objects since their norm diverges. This follows
from the transverse scalar product (¢|d), (z, t), which
yields for any pair of solutions ¢, $ of Eq. (6) with
different spectra f, f (but equal velocity v),

(Bld), = 27 fo " f@)f (@a'da. (1)

Since (¢p|$) | does not depend on z, ¢, the 3D norm (| )
of any X wave ¢ diverges, thus requiring an (unphysical)
infinite number of atoms. Remarkably, however, finite
norm beams can be generally constructed by introducing
new orthogonal X waves [24]. Inspired by Eq. (11), we
exploit the orthogonality of associated Laguerre poly-
nomials Lgl)(x) (g=0,1,2,...), with respect to the
function xexp(—x), to introduce a numerable class of
(transversally) orthogonal X waves q‘),}(r, z, t|lv) defined
by the spectra (and parametrically by their velocity v)

Aa

mJ2(q + 1)

The X waves d) 7 satisfy the orthogonality relation
(g{)!ﬂcf)j L = 6,,/4m, with §,, the Kronecker symbol.
Importantly, the 3D scalar product shows that such waves
are orthogonal also with respect to the velocity, i.e., any
pair of waves with velocity u and v satisfies the relation

by (rz tlo)ldg(r 2 tlu) = 8,,6(v —u).  (13)

From Eq. (13) it is natural to consider the solution ¢ =
¢s of Eq. (6) given by the superposition of orthogonal
X waves {¢} traveling with different velocities v as

fHa) = LPAa)e e, (12)

¢s(r,z 1) = Z foo C,W)pt(r, z tlv)dv. (14)
4 )

From the orthogonality relation (13), we find that the total
number of atoms is

Ny =(sleps) =D N, (15)
q

where N, = [*_|C,(v)|*dv represents the atom num-
ber of the gth X wave component gbq (v) of the wave
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packet. Therefore we obtain the remarkable result that,
while the superposition ¢y generally describes atom
wave packets which evolve in time, such evolution pre-
serves the distribution of atom number among the X wave
components.

The importance of Eq. (14) stems from the fact that ¢y
describes a wide class of physical atom beams. To show
this, we start from the integral representation of g{)j in
term of its spectrum (12), which yields

¢s =[ f Fa, v)Jo(ar)ele@/2X=i@ /4 g qo dy,
0 J0
(16)

where F(a, v) = a‘lquq(v)fql (a). By introducing new
variables k,, k. such that @« = k, and v = 2(k, — k), and
setting U(k,, k,) = 2F(k,, 2k, — 2k,), Eq. (16) can be cast
in the form

by = f ” ﬁ " Uy k)Jo(k, ekl ®@ =k dk,dk.,

which represents the generic axisymmetric solution of
Eq. (6), expressed in 3D momentum space (k, k.), k;
being the transverse (with respect to the lattice)
momentum. Here U(k, k,) is the Fourier-Bessel (or
plane-wave) spectrum of the initial atom distribution
do(r, z) = q’)(r z,t=0), and Ulk, k;) = 2k 'Y, X

C,(2k, — 2k;) fq7 (k,) stands for its expansion in terms
generalized Laguerre polynomials [any square-integrable

f(x) in x € [0, 00) can be expanded in terms of Lgl)(x)].

This argument can be reversed by stating that, given
the initial (z = 0) distribution of atoms U(k,, k.) in mo-
mentum space, if F(a, v) = U(a, a — v/2)/2 is square
integrable with respect to a [with @ € [0, )], then the
atom wave packet admits the representation (14). The ex-
pansion coefficient can be easily calculated as C,(v) =

2A/mqg 1) [§ Ule, @ — ) exp(—ZaA)LEII) X

(2aA)ada. Clearly, most of physically relevant wave
packets belong to the class ¢y [25]. For example, a
spectrally narrow Gaussian beam can be described by
few X waves (details will be given elsewhere).

Once the existence of finite norm linear X waves is
established along with their potential to describe gen-
eral BECs, the most intriguing question remains whether
we expect matter X-shaped atom distributions to be ob-
servable. Such waves correspond to a single fixed value
g = ¢ in Eq. (14) and an ideal velocity distribution
C;(v) = 8(v — v). However, more generally, we can con-
sider an atomic envelope beam ¢, constituted by several
replicas of the single X wave ¢ ‘Jj traveling with different
velocities. Although, strictly speaking, such a beam is not
stationary, it can approximate such a state with an arbi-
trary degree of accuracy. In other words, it is possible to
construct solutions that preserve their shape, for an arbi-
trary long time. Indeed if C;(v) is a narrow function, e.g.,
peaked around v = 0, Eq. (14), using also Eq. (7), yields
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1

atom density

FIG. 2. Atom density of a pure X wave |¢;,L(r, 2)|? withg =0
and A = 1, as seen on the (x, z) plane (y = 0). The insets show
(same units as in Fig. 1) the overall (thin line) and envelope
(bold line) density on axis and off axis, respectively.

the following atom envelope ¢,:
bu(r,2,1) Zf 0F(r,2 = v1)Cyv)e 1/ D gy

= g5 (r2)c(z1), (17)

where ¢(z, 1) = [, Cz(v)exp(—i4z + i”th)dv is a solu-
tion of the dispersive wave equation id,c — d2c = 0.
Equation (17) represents an X wave modulated by a dis-
persing wave, which gives a sort of adiabatic dynamics of
the finite norm X wave. Indeed the atom beam has an
invariant spatial shape fixed by goql, which we display in
Fig. 2 as an example for g = 0. It spread on a character-
istic time which is longer, the narrower is the velocity
distribution function Cq(v). In the linear regime, we
expect that such atom states should be somehow prepared.
Conversely atom collisions (nonlinear regime) could be
envisaged to strongly favor the X wave formation through
instability mechanisms [16,26], when starting from con-
ventionally prepared ball-shaped atom clouds (e.g., after
switching off a harmonic 3D trap), an issue that calls for a
numerical study of the evolution problem (1).

In summary, we have shown that a lattice supports
moving or still localized states of the GP model with
envelope X shape. A matter X wave entails localization
both in momentum and configuration space, thus being a
clear signature of a Bose condensed gas, so much as the
anisotropy in the distribution function [2] detected in
early experiments. Unlike any other form of BEC includ-
ing solitons, matter X waves can be observed in free space
and in a noninteracting regime, where they are the natural
basis to describe the coherent properties of atom wave
packets. These results have strong implications in optics
where Egs. (5) and (6) holds for normally dispersive
homogeneous media [26], and Eqs. (2) models 3D dif-
fractive propagation in stratified media or along proper
directions of 3D photonic crystals.
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