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Determining a Quantum State by Means of a Single Apparatus
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The unknown state �̂� of a quantum system S is determined by letting it interact with an auxiliary
system A, the initial state of which is known. A one-to-one mapping can thus be realized between the
density matrix �̂� and the probabilities of the occurrence of the eigenvalues of a single and factorized
observable of S� A, so that �̂� can be determined by repeated measurements using a single apparatus. If
S and A are spins, it suffices to measure simultaneously their z components after a controlled
interaction. The most robust setups are determined in this case for an initially pure or a completely
disordered state of A. They involve an Ising or anisotropic Heisenberg coupling and an external field.
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Realistic experiments can be designed along these lines,
as we shall see.

data P�. If the assistant A has the same dimensionality
m as S, this mapping is represented by a square matrix. In
Consider a set of identical quantum systems S, pre-
pared in some unknown state �̂�. Measuring some observ-
able !̂! of S provides the probabilities pi � tr�̂��̂�i for the
distinct eigenvalues !i of !̂!, where �̂�i are the associated
eigenprojections.We thus find partial information on �̂�. A
question then arises which lies at the heart of quantum
theory: Which observables need to be measured for a
complete determination of �̂� [1–4]? The recognition
that certain noncommuting observables have to be mea-
sured for that purpose was used by Bohr to formulate the
principle of complementarity [1,5]. Later on the problem
of determining an unknown state was considered from
various perspectives for continuous [3] and discrete sys-
tems [4] and found applications in quantum communica-
tion [6,7]. But whether noncommutative measurements
are truly needed was rarely questioned.

We wish to determine the whole set of unknown matrix
elements of the state �̂� of a system S. In fact, what we call
‘‘the state of a system,’’ whether it is pure or not, refers to
the density matrix describing an ensemble, and the deter-
mination of the data will require repeated experiments.
However, we will show that a single apparatus which
measures commuting observables only suffices for our
purposes. The key of the method consists of coupling
the system S to an auxiliary system A, the state of which
we know.We will show that the full �̂� can then be deduced
from simultaneous measurements of two obviously com-
muting observables, !̂! pertaining to S and ôo pertaining
to A, respectively. Repeated measurements of !̂! and ôo
yield the joint probabilities of occurrence for all pairs of
eigenvalues of !̂! and ôo; this will be sufficient to deter-
mine the whole density matrix �̂� of S, provided the initial
state of A and the joint evolution of S� A are known. We
shall discuss the most robust measurements of this type
and point out certain advantages that this scheme pro-
vides over the usual methods of state determination.
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General reasoning.—The following counting argu-
ment already suggests the feasibility of the above idea:
The number of real parameters that characterize �̂�, a
Hermitian matrix with unit trace in m-dimensional
Hilbert space, is m2 � 1. On the other hand, the most
informative repeated measurements of an observable !̂! of
S, those for which the spectrum !i is nondegenerate,
provide m� 1 independent data, the probabilities tr�̂��̂�i.
Thus, measurements directly performed on S must deal
with at least �m2 � 1�=�m� 1� � m� 1 noncommuting
observables to fully determine the unknown �̂�. For in-
stance, the 2� 2 density matrix �̂� � 1

2 �1̂1� ~�� � ~̂̂� of a
spin- 12 is parametrized by the m2 � 1 � 3 expectation
values ~�� � tr��̂� � ~̂̂� of the Pauli matrices ~̂̂ �
�̂1; ̂2; ̂3� with ̂1̂2 � î3, and its determination re-
quires measuring the spin in m� 1 � 3 noncoplanar
directions. Experiments with three different apparatuses
are needed, even if the unknown state �̂� is pure (�̂� 2 � �̂�
or ~��2 � 1), since then the measurement of two compo-
nents of ~�� does not fix the sign of the third one.

In order to design a scheme where �̂�will be determined
by measurements of a single observable (or, equivalently,
by commuting measurements only), it is natural to in-
troduce [8] an auxiliary system A that we term the assis-
tant and which lies in a known state r̂r. Let n be the
number of dimensions of the Hilbert space of A. The
compound system S� A has a mn�mn density matrix
R̂R � �̂� � r̂r. Reference [8] proposes measuring one of its
observables, a ‘‘universal quantum observable,’’ �̂� �P

��P̂P�, where the spectrum �� is not degenerate so
that the eigenprojections P̂P� constitute a complete set of
mn� 1 commuting observables. Such repeated measure-
ments providemn� 1 independent data P� � trR̂RP̂P�, the
probabilities of the eigenvalues �� of �̂�. A linear map-
ping �̂� � P� �

P
ijM�;ij�ji is thus generated, leading

from the m2 � 1 real parameters of �̂� to the mn� 1
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general, if the measured observable �̂� intertwines suffi-
ciently S and A, the determinant � � detM�;ij of this
matrix will be nonzero. The inverse mapping then solves
our problem: measurements of �̂�, performed repeatedly
with a single apparatus, yield the probabilities P�, the
knowledge of which is equivalent to that of �̂�.

However, the above scheme is very difficult to imple-
ment in practice, since it implies measuring an observable
�̂� (or a commuting set P̂P�) which thoroughly mixes S and
A. We propose here a procedure allowing a much simpler
choice for �̂�. The measurement of �̂� is performed not at
the time t � 0, at which S is prepared in the unknown
state �̂� and A in the known state r̂r, but at a later time t �
�. During the lapse 0< t < �, S and A interact, their
evolution being generated by a known Hamiltonian ĤH.
The state of the composite system S� A which is tested
is now R̂R� � ÛUR̂R0ÛU

y, where the initial state is R̂R0 �
�̂� � r̂r and the evolution operator is ÛU � e�iĤH�. The re-
quired mixing of �̂� and r̂r being thus achieved by dynam-
ics, we can now measure the simplest possible
nondegenerate observable �̂�, a factorized quantity �̂� �
!̂! � ôo. The observables !̂! and ôo of S and A have the
spectral decompositions !̂! �

Pm
i�1!i�̂�i and ôo �Pn

a�1 oap̂pa and the projection operator P̂P�, with � �
fiag, takes the form P̂P� � P̂Pia � �̂�i � p̂pa. Repeated mea-
surements of �̂�, i.e., of !̂! and ôo simultaneously, deter-
mine the joint probabilities

P� � Pia � tr ÛU��̂� � r̂r�ÛUy��̂�i � p̂pa� (1)

to observe!i for S and oa for A. [The numbers Pia are the
diagonal elements of ÛU��̂� � r̂r�ÛUy in the factorized basis
which diagonalizes !̂! and ôo.] Like above, the mapping
�̂� � P� is expected to be invertible for n  m, provided
ĤH couples S and A sufficiently. We shall see that even very
simple interactions can achieve the thorough mixing that
is required. Then simultaneous measurements of !̂! on the
system S and of ôo on the assistant A, based on the mere
counting of the events fiag and of their correlations, fully
determine �̂� through inversion of the equation (1).

For given observables !̂! and ôo and for a given initial
state r̂r of the assistant, the precision of this scheme of
measurement of �̂� relies on the ratio between the experi-
mental uncertainty about the set P� and the resulting
uncertainty on �̂�, which can be characterized by the
determinant � of the transformation (1). For � � 0 it
would be impossible to determine �̂� by means of P�. The
Hamiltonian ĤH and the duration � of the interaction
should thus be chosen so as to maximize j�j.

Two by two density matrix.—We illustrate the above
ideas by studying a two-level system S (m � 2). We use
the spin- 1

2 representation �̂� � 1
2 �1̂1� ~�� � ~̂̂�. The determi-

nation of the unknown polarization vector ~�� relies on the
coupling of S with the assistant A, which we first take as
another two-level system �n � 2�. The observables !̂! and
ôo to be measured are the z components ̂3 and ŝs3 of S and
A, which may be equal to 1 or �1. The projection opera-
tors are �̂�i �

1
2 �1̂1� ̂3� and p̂pa �

1
2 �1̂1� ŝs3� for i and a
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equal to �1. Experiments determine the four joint prob-
abilities P� � fP��; P��; P��; P��g, for 3 and s3 to
equal 1 or �1. These probabilities are related to the three
real parameters ~�� of �̂� through Eq. (1), which reads

P� � u� � ~vv� � ~��; (2)

u� � 1
2�ÛU�1̂1 � r̂r�ÛU

y��;�; ~vv� � 1
2�ÛU� ~̂~ � r̂r�ÛUy��;�;

with � � fiag � f��g and matrix elements taken in the
standard representation of the Pauli matrices ~̂~ and ~̂ss~ss.

By construction, the mapping (2) is such the probabil-
ities P� are non-negative and normalized for any �̂� such
that ~��2 � 1. These properties are expressed by

u�  j ~vv�j;
X
�

u� � 1;
X
�

~vv� � 0: (3)

The determinant � of the transformation �̂� � P� is
4 times the volume of the parallelepiped having any three
of the four vectors ~vv� as its sides, e.g., � � 4 ~vv�� �
� ~vv�� � ~vv���. Provided the evolution operator ÛU is such
that the vectors ~vv� are not coplanar, the transformation
(2) can be inverted, and �̂� is deduced from the set P� of
classical probabilities. Alternatively, �̂� is deduced from
the expectation values ĥ3i, hŝs3i, and ĥ3ŝs3i at the time
t � �, which are simultaneously measurable and are in
one-to-one correspondence with the set P�.

We first look for the upper bound of j�j implied by the
conditions (3). First we note that j�j increases with j ~vv�j
for each �. We therefore maximize �2 under the con-
straints

P
�j ~vv�j � 1 and

P
� ~vv� � 0 that we account for

by means of Lagrange multipliers  and ~!!. Varying
1
8 �

2 � "
P
�j ~vv�j � ~!!

P
� ~vv� and eliminating ~!!, we find

�� ~vv�� � ~vv��� �  
�
~vv��

j ~vv��j
�

~vv��

j ~vv��j

�
; (4)

and other equations resulting from all permutations of the
�’s. This yields symmetric solutions for which the four
vectors ~vv�, � � f�;�g form a regular tetrahedron:

u� � j ~vv�j �
1

4
;

~vv� � ~vv#
j ~vv�jj ~vv#j

� �
1

3
; � � #: (5)

These solutions are not unique: they follow from one
another by rotation in the space of the spins ~ and
permutation of the indices �. The corresponding upper
bound for the determinant is j�j � 1=�12

���
3

p
�.

Let us exhibit a measurement scheme that allows one to
reach this bound. We have to construct a unitary operator
ÛU that satisfies Eqs. (2) and (5), and to find a Hamiltonian
ĤH and an interaction time � such that ÛU � e�iĤH�. We
assume that the assistant is initially in the pure state r̂r �
p̂p� � 1

2 �1� ŝs3�, and we orient the tetrahedron ~vv� in the
direction ~vv�� � ��1; 1;�1�=4

���
3

p
, ~vv�� � ��1;�1;

�1�=4
���
3

p
. The correspondence (2) then takes an espe-

cially simple form:

�1 �
���
3

p
hŝs3i; �2 �

���
3

p
ĥ3i; �3 �

���
3

p
ĥ3ŝs3i;

(6)
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yielding directly the density matrix �̂� in terms of the
expectation values and the correlation of the commuting
observables ̂3 and ŝs3 in the final state. It is easy to verify
that this correspondence can be achieved under the action
of the Hamiltonian ĤH � ̂1�ŝs1 cos$� ŝs3 sin$�=

���
2

p
�

1
2 ��ŝs2 � ŝs1� sin$� ŝs3 cos$�, where 2$ � 0:955 31 is the
angle between ~vv�� and the z axis, that is, cos2$ � 1=

���
3

p
.

Noting that ĤH2 � sin2%, where % � 1:110 69 satisfies
cos% � 1

2 cos$, and taking as duration of the evolution
� � %= sin%, we obtain ÛU � exp��iĤH�� � cos%� iĤH.
Insertion in (2) allows us to check Eq. (5) and to get the
expected optimal correspondence (6). The simpler form,

ĤH �
1���
2

p ̂1ŝs1 �
1

2
�ŝs2 sin$� ŝs3�; (7)

follows by a rotation of ~̂sŝss and also achieves an optimal
mapping �̂� � P�, provided ŝs3 ! ŝs1 sin$� ŝs3 cos$ both
in the measured projections p̂pa �

1
2 �1� ŝs3� and in the

initial state r̂r � p̂p�. The first term in (7) describes, in the
spin language, an Ising coupling, while the second term
represents a transverse magnetic field acting on A.

Larger assistant.—We have optimized above the deter-
mination of �̂� by coupling S to an assistant A that starts in
a pure state and has the same dimension n � m � 2 as S.
Let us see how the quality of the measurement, as ex-
pressed by the magnitude of �, depends on these con-
ditions. Consider, for instance, an assistant consisting of
q spins, in which case m � 2 and n � 2q > m. We now
denote as ŝs3 some two-valued observable of A which is
subjected to measurement at the time �. The only changes
in (1) are the dimension n of the matrix r̂r and the fact that
the two projection operators p̂pa no longer constitute a
complete set in the Hilbert space of A. Experiment still
provides the four probabilities P� � tr R̂R���̂�i � p̂pa� with
unit sum, and the mapping �̂� � P� keeps the form (2).
The conditions (3) still hold, since they express simply
that the correspondence (1) or (2) preserves the positivity
and the normalization. When obtaining the upper bound
1=�12

���
3

p
� for j�j we relied only on these conditions.

Therefore, using a larger assistant cannot improve upon
the optimal solutions found for n � 2 and pure r̂r. In all
cases, the maximum of j�j is reached for mappings (2)
which involve the regular tetrahedron (5). In such map-
pings there exist four pure states, �̂� ��� � 1

2 �1� 4 ~vv ��� � ~̂~�,
for which one probability, P ���, vanishes.

If the measured observable ôo of A has more than two
distinct eigenvalues, the probabilities Pia, which depend
only on the three parameters of �̂�, are related to one
another. This opens a possibility of improving the deter-
mination of �̂� through a cross-check of the data Pia.

Assistant in a mixed state.—Returning to the case n �
m � 2 we now look how much j�j decreases when the
state r̂r � 1

2 �1̂1� "ŝs3� is no longer pure (0 � " < 1). We
find it convenient to parametrize ÛU in terms of three
angles, (, ’, and  , and four unit vectors ~%%, ~++, ~,,, and ~-- ,
120402-3
ÛU � �V̂Vp̂p� � ŴWp̂p���cos’�cos(ŝs3 � sin(ŝs1�

� sin’�sin(ŝs3 � cos(ŝs1�%̂% � ~̂̂�

� �cos � i sin �+̂+ � ~̂̂�ŝs3�; (8)

where the 2� 2 unitary matrices V̂V and ŴW in the space of
S are characterized by V̂Vŷ3V̂V � ~,, � ~̂̂, ŴWŷ3ŴW � ~-- � ~̂̂.
The expression of j�j resulting from (2) is a function of
these parameters. We maximize it, first with respect to ~%%,
~++, ~,,, and ~-- , then to  and finally to ( and ’. The
calculation is straightforward but tedious and we present
only the result for ~%% � ~++ � 0, which is optimal for " close
to 1 and at " � 0:

�32��2 � 1�
2"4

3
�

8"6

9
�
"8

27

�
���������������
1� "2

p �
2"
3

���������������
3� "2

p �
3
: (9)

This is an increasing function of ", behaving as "=12
���
3

p

near " � 1 and reproducing there the maximum 1=12
���
3

p
.

Let us now focus on the extreme situation " � 0, for
which the state r̂r � 1

2 1̂1 is completely disordered. It is
advantageous to use such a state, as it is easier to prepare
than a pure state: one lets the assistant interact with a hot
thermal bath; for a spin, one leaves it unpolarized. It
would be completely ineffective to use in this case the
simple evolution (7) which was optimal for " � 1, since
any �̂� would then map onto the trivial set of probabilities
P� � 1=4. However, according to (9), j�j may reach
the value 1=32 for a suitable choice of the evolution ÛU.
This goal is achieved, in particular, for ( � ’ � �=8,
 � �=4, ~,, � ~-- � � ~++� ~%%� ~++�=

���
2

p
. Choosing ~%% �

�1; 0; 0� and ~++ � �0; 1; 0�, we then find from Eq. (2) the
same mapping as (6), except for replacing

���
3

p
by 2.

Surprisingly, the efficiency of the new scheme is not
much worse than when the assistant starts in a pure state.
For " � 0 the Hamiltonians needed to maximize j�j
require a coupling more complicated than (7), e.g.,

ĤH �
1

2
~̂̂ � ~̂sŝss�

���
2

p
̂2ŝs2 �

1���
2

p �̂1 � ŝs1�: (10)

This Hamiltonian involves an anisotropic Heisenberg
interaction and an external field acting symmetrically
on S and A. Using Eq. (2) with r̂r � 1

2 1̂1, one can check
that for � � 1

4 �2k� 1�� the evolution operator ÛU �
e�iĤH� leads to an optimal solution with � � 1=32. For
� � �=4 Eq. (6) is replaced by

�1 � 2ĥ3ŝs3i; �2 � 2�hŝs3i cos1� ĥ3i sin1�; (11)

�3 � 2�ĥ3i cos1� hŝs3i sin1�; 1 �
��1�

���
2

p
�

4
:

Conclusion.—The noncommutative information con-
tained in the density matrix of a quantum system S can
be transformed by a one-to-one correspondence into or-
dinary information associated with a set P� of ordinary
probabilities for exclusive events. The price to be paid
is the introduction of an assistant system A. The
120402-3
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correspondence can be experimentally implemented by
letting S and A suitably interact, then by performing
simultaneous measurements of two commuting observ-
ables !̂! and ôo pertaining to S and A, respectively.
Counting of events in repeated experiments yields the
probabilities Pia for !̂! to take the value !i and for ôo to
take the value oa. Provided the number of distinct eigen-
values!i (1 � i � m) of !̂! equals the dimensionm of the
Hilbert space of S, and provided the number of eigenval-
ues of ôo is also m (at least), the correspondence �̂� � P�
can be inverted, as we displayed on several examples.
This condition implies that the assistant has a dimension
n  m. Hence an initially unknown �̂� can be determined
via P� by means of a single apparatus.

As compared to the standard determination schemes of
�̂� based on direct noncommutative measurements of S,
the present method has several advantages. (i) It is more
economical, since it involves only one observable !̂! of S
and one observable ôo of A, whereas direct determinations
require measuring at least m� 1 noncommuting observ-
ables of S. (ii) This full set of m� 1 observables is not
always accessible in practice. For instance, for a two-level
atom prepared in some unknown state �̂�, �3 is readily
measured through the occupation probability of the ex-
cited state, but �1 and �2 can be determined only indi-
rectly. Interaction of S with another two-level atom A
having a known initial density operator (whose prepara-
tion may be straightforward, as we saw above) can pro-
vide the full �̂� through mere simultaneous measurements
of the occupation probabilities for the levels of S and A.
(iii) Standard statistical and information theoretical
methods for dealing with incomplete or noisy experimen-
tal data cannot be directly extended to quantum mechan-
ics [9] when results are produced by means of different
apparatuses, since the data then pertain to different con-
texts. The present scheme circumvents this difficulty.

Taking as a criterion of quality of our measurement
schemes the size of the determinant � of the mapping
�̂� � P�, we have explored for m � 2 the conditions that
lead to the best determination of �̂� for some uncertainty
on the set P�. For an assistant with dimension n � 2, its
known initial state r̂r should be pure and the parameters of
the Hamiltonian should be suitably chosen as in the
example (7). Not much is lost if r̂r is mixed: Even for a
completely disordered assistant with n � 2, we can find
Hamiltonians such as (10) for which j�j is smaller than
the upper bound only by a factor �

���
3

p
=2�3 ’ 0:65. The

determinant cannot be enlarged by use of an assistant
with dimension larger than 2, but then the determination
of �̂� can benefit from measuring redundant data.

Form � 2, the optimal mappings (2) and (5) amount to
identify, via a dynamical process, the joint probabilities
P� for ̂3 and ŝs3 with the expectation values in the state �̂�
of the observables 1

2 �1̂1� �̂���, where �̂�� � 1
2 �1̂1� 4 ~vv� �

~̂̂� pertains to S. The four observables �̂�� are projection
operators, satisfying tr �̂���̂�# � 1

3 for � � #, and span-
ning the space of observables !̂! of S. For m > 2 we
120402-4
conjecture that a bound on the determinant � may be
found by considering in the Hilbert space of S a set of m2

projections �̂��, satisfying tr �̂�� � 1, tr �̂���̂�# � 1=�m�
1� for � � #,

P
��̂�� � m 1̂1, and constituting a basis for

the observables !̂!. Then the mapping matrix M in P� �P
ijM�;ij�ji is expected to be given by m�m� 1�M�;ij �

2ij ���;ij. This form makes � stationary under the
constraints imposed by positivity and normalization
alone. As above, there are m2 pure states �̂� ��� � �̂� ��� for
which one probability,P ���, vanishes. This yields for �2 the
upper bound m�1�m�m� 1��m� 1�2�1�m

2
.

We found that the dynamical processes which afford
the best determination of �̂� are remarkably simple.
Indeed, the various types of two-level systems on which
experiments are currently performed (NMR, quantum
and atomic optics, spintronics) feature Hamiltonians
similar to (7) and (10) that optimize the process, with
Ising or Heisenberg types of couplings. For instance, the
spin-spin interaction between two single-electron quan-
tum dots is usually anisotropic due to spin-orbit coupling
or to a lack of symmetry of the host material; see [10] for
a recent discussion. Experiments can therefore easily be
designed along the above ideas. They will demonstrate
that the principle of complementarity, which seems to
imply that different measurement devices are needed to
fully determine a quantum state, can be bypassed by
using an assistant, even completely disordered.
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