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Hidden Neuronal Correlations in Cultured Networks
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Utilization of a clustering algorithm on neuronal spatiotemporal correlation matrices recorded during
a spontaneous activity of in vitro networks revealed the existence of hidden correlations: the sequence
of synchronized bursting events (SBEs) is composed of statistically distinguishable subgroups each with
its own distinct pattern of interneuron spatiotemporal correlations. These findings hint that each of the
SBE subgroups can serve as a template for coding, storage, and retrieval of a specific information.
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FIG. 1. An example of a raster plot presentation of the
recorded network activity showing the synchronized bursting
events and a closer look at an individual event (top two boxes).
The binary vector of an individual event is shown in the third
box and its corresponding activity density Dn

j �t� is shown in the
bottom box. A SBE is identified whenever the number of
neurons that fired during a time segment of 100 ms exceeds a
n
of 400 ms around Tn, which is divided into time bins of

threshold (usually taken to be 80% of the total number of
recorded neurons).
Traditionally, it has been debated whether informa-
tion stored in time series of neuronal activity is encoded
in the temporal locations of firing (time coding) or in the
local firing rates (rate coding). It was also proposed that
synchrony or correlation between neurons’ activities
might encode information (see [1,2] for a review). The
studies presented here are guided by the assumption that
interneuronal correlations do play an important role in
information processing. To understand this role, comple-
mentary studies of spatiotemporal correlations of re-
corded activity of in vivo, ex vivo, and in vitro networks
are called for [3–8]. The cultured neuronal networks
studied here provide relatively simple and well-controlled
systems for the in vitro investigations. Despite their
simplicity, these cultured networks can exhibit rich
spontaneous dynamical behavior and also regulate both
the morphology of their circuitry and the synaptic
strengths to sustain the desired level and structure of
their activity [9–18].

The spontaneous activity of isolated networks is
studied by growing dissociated cultures of cortical neu-
rons on top of a multielectrode array composed of 60
electrodes. Neurons and glia cells drawn from one-day-
old Charles River rats are prepared and maintained ac-
cording to the protocol described in [15]. Subsequently,
they are left to spontaneously self-organize within sev-
eral days into connected and active networks. The net-
works’ activity is noninvasively recorded as several (tens)
of the neurons form capacitive coupling with the elec-
trodes, thus enabling the recording of their action poten-
tials. Typical recorded activity is visualized utilizing the
raster plot presentation as shown in Fig. 1. Two distinct
patterns of activity are transparent: time segments of
�200 ms during which most of the recorded neurons
exhibit rapid firing, and long intervals of sporadic neuro-
nal firing separating them. Our goal is to evaluate the
correlations between the synchronized bursting events
(SBEs) and to relate them with the intra-SBE neuronal
activity.

We start with a representation of the nth SBE as a
binary matrix located at time T within a time window
0031-9007=04=92(11)=118102(4)$22.50 
1 ms [19]. For N recorded neurons, the matrix is com-
posed of N rows of 400 bins, each row representing the
activity of a specific neuron. The activity of the jth neuron
is presented as a binary vector An

j;l � 1, if the jth neuron
fired during the lth time bin and zero otherwise. These
activity vectors are then convoluted with a normalized
Gaussian of width adjusted to the firing rate to obtain a
smooth representation of the jth neuron local activity
density Dn

j �t� or firing rate, as shown in Fig. 1.
Next, we define Cn;m

i �� to be the cross correlation
[20,21] between the activity of the ith neuron at the nth
SBE and the mth SBE to be

Cn;m
i �� � Dn

i �t� �Dm
i �t� �; (1)

where � denotes the standard normalized correlation
function between two vectors as a function of the dis-
placement . Utilizing these neuronal cross correlations
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the inter-SBE correlation matrix (or events correlations),
EC�n;m�, is evaluated by relating

EC�n;m� � max

 XN
i�1

Cn;m
i ��

!
; (2)

where N is the number of recorded neurons.
A typical example of an inter-SBE correlation matrix

for a recorded temporal sequence composed of 300 SBEs
is shown in Fig. 2(a). No pronounced organizational
motifs or particular patterns can be identified. In order
to find out whether such motifs do exist, we use the
standard dendrogram clustering method [20,21] for reor-
dering the recorded sequence of SBEs. The idea is to form
a new sequence such that highly correlated events will be
closely located in the reordered sequence. To do so we
utilize the correlation distances ED�n;m� (which repre-
sent the distances between the positions of the SBEs in
the correlation space) given by

ED�n;m� �

 XNE

m0�1

�EC�n;m0� � EC�m;m0�	2

!
1=2

: (3)

These distances are used by the dendrogram clustering
algorithm to reorder the sequence as we show in Fig. 2(b).
The resulting clusterized matrix exhibits a clear block
organization, as shown in Fig. 2(c). Such block partition-
ing indicates that the recorded SBEs sequence is com-
FIG. 2. (a) An example of the inter-SBE correlation matrix
EC�n;m� for a sequence of 300 SBEs. The gray levels represent
the degrees of correlations using the standard TV scale. (b) A
segment of the recorded sequence of the SBEs and their rela-
tive distances ED�n;m� represented as the connecting heights.
(c) The reordered correlation matrix. Note that this reordered
sequence does form a clear block organization hinting about
the existence of distinct subgroups of SBEs. (d) A segment of
the recorded sequence of SBEs sorted according to the sub-
groups shown in (c) to demonstrate that they are mixed in their
order of temporal appearances.
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posed of subgroups of distinct SBEs with a mixed
temporal order of appearance [22,23].

To further test the general abilities of the method
presented here in discovering hidden correlations, we
also applied it to recordings from a chemically stimulated
(by Ca

) network, described in [24]. The network is first
allowed to self-organize at the normal calcium level
(0.5 mM) until its spontaneous activity reaches a steady
normal level. Then the calcium level is increased to
1 mM. Consequently, the activity becomes more intense
for about 20 min, exhibiting wider SBEs and at a higher
rate. Afterwards, the network seems to adjust to the
new calcium level and the activity becomes similar to
the normal one. Long after the 20 min transient time,
while the network exhibits normal activity, the calcium
level is increased again to 2 mM. In this case the increase
in calcium level seems to have a weaker effect on the
network activity.We constructed a mixed sequence of 150
SBEs, 50 taken from the normal level of activity at
0.5 mM, 50 from the rapid transient activity at 1 mM,
and an additional 50 from the 2 mM. Our dendrogram
clustering method exactly identified the three sub-
groups of SBEs for the three calcium levels with no false
positives (see Fig. 3). More important, it was also able to
reveal that the 0.5 and 2 mM subgroups have on average
higher correlations.

We proceed to relate each subgroup of SBEs with its
neuron correlations matrix NC�i; j�, defined as

NC�i; j� �
X
n�I

Dn
i �t� �Dj

n�t�: (4)
FIG. 3. The correlation matrix for a recorded sequence of
SBEs in the presence of different levels of calcium: events
No. 1–50, 51–100, and 101–150 correspond to 0.5, 2, and 1 mM
extracellular Ca

, respectively.
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Note that here the correlation between the ith and the jth
neurons at the nth SBE is averaged over the events of
the ith subgroup of SBEs. In Fig. 4 we present the neuro-
nal correlation matrix on a corresponding ‘‘correlation
circle.’’ The neurons are positioned along the circle using
the dendrogram algorithm on their correlation distances
determined by ND�i; j� [in analogy with ED�n;m�]. As is
illustrated in Fig. 4 each subgroup of SBEs can be asso-
ciated with its own specific correlation map on the den-
drogram correlation circle.

In brain studies the recorded activity is presented by
constructing connectivity networks between the elec-
trode positions according to the evaluated coherence
(correlations). Following this approach we also construct
similar connectivity networks for our recordings by map-
ping the neuronal correlations NC�i; j� onto their physical
space. That is we link the electrodes according to the
computed correlations as is explained and shown in Fig. 4.
Comparison between the two formats of presentation
reveals interesting features. For example neurons at re-
mote locations in real space, e.g., neurons (24,44) on the
top and (24,37) on the bottom can be closely located on
the dendrogrammed sequence. The same neuron can as-
sume a very different role at each subgroup of SBEs. For
example neuron 25 is highly correlated with many neu-
rons in one subgroup and very weakly correlated in the
other.
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FIG. 4 (color online). The interneuron correlations for the
two larger subgroups of SBEs (the larger blocks) shown in
Fig. 2(c). On the left we show the dendrogram correlation
circle, and on the right the corresponding connectivity net-
works in the physical space. The links represent the correlations
NC�i; j� (using gray levels) above a 0.7 threshold. In this figure
the number of each neuron is the number of the electrode
through which it is recorded.
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Motivated by all of the above, the notion of Synfire
chains [25,26] and the observations of ‘‘imaginary neu-
rons’’ [27], we have studied the connections between
the temporal partitioning of the SBEs into correlated
subgroups and the intra-SBE neuronal activity of each
subgroup. Looking for rate ordering, we generated a
convoluted raster plot for each block of the inter-SBE
correlation matrix. Distinguishable rate ordering patterns
are clearly observed, as demonstrated in Fig. 5.

Our findings of temporally mixed distinct subgroups of
spatiotemporal correlations, which persist over long
times, might hint at the existence of a new neuroinfor-
matic motive. Each kind of SBE can serve as a template to
process specific information within its specific neuronal
spatiotemporal structure of correlations. This motive can
also be tested as a possible new method for storage of
information in the in vitro networks. The idea is to stimu-
late a network in parallel at several locations via signals
with spatiotemporal correlations similar in structure to
those we have recorded. The stimulations should be in
bursts separated by time intervals corresponding to the
temporal ordering of the measured SBE time series. For
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FIG. 5. (a),(c) A raster representation of 20 SBEs simulta-
neously drawn from the largest subgroups of SBEs (a) and the
second largest block (b) (both represented in Fig. 2). Each
subgroup of 20 rows represents the firing of a single neuron.
The times of the spikes are measured with respect to the SBE
time. The neurons fire with a high degree of repetition between
successive SBEs. (b),(d). An evaluation of the probability to fire
of each neuron during the SBEs from the two larger subgroups.
This representation enables one to evaluate the correspondence
between the division into subgroups. Note that each neuron has
its own delay with respect to the other neurons. For example,
the activity of the 6th neuron, which during SBEs from sub-
group 1 exhibits three spikes and during subgroup 3 exhibits
only one spike.
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coding of several messages the network has to be stimu-
lated by a time series composed of temporally mixed
bursts, each with its own specific spatiotemporal correla-
tions. Retrieval of the stored information requires a tem-
poral decoding key of the SBEs sequence, which has to be
derived from the inverse of the inter-SBE correlation
matrix of stimulations. Such studies, although of isolated
in vitro networks, bear the promise to provide important
clues towards solving the long-standing enigma about
encoding and retrieval of information both by in vitro
and also by in vivo coupled neuronal networks.
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