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Practical Limitation for Continuous-Variable Quantum Cryptography using Coherent States
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In this Letter, first, we investigate the security of a continuous-variable quantum cryptographic
scheme with a postselection process against individual beam splitting attack. It is shown that the scheme
can be secure in the presence of the transmission loss owing to the postselection. Second, we provide a
loss limit for continuous-variable quantum cryptography using coherent states taking into account
excess Gausian noise on quadrature distribution. Since the excess noise is reduced by the loss
mechanism, a realistic intercept-resend attack which makes a Gaussian mixture of coherent states
gives a loss limit in the presence of any excess Gaussian noise.
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from that of the discrete schemes. change the results of the following discussion.
The security of quantum cryptography is degraded by
the presence of realistic experimental imperfections. In
particular, the transmission loss limits the performance
of schemes for a long distance transmission [1].

Recently, several continuous-variable quantum crypto-
graphic schemes have been proposed [2–9]. Those are
sorted into either all-continuous type or hybrid type
[5]; the all-continuous scheme distributes a continuous
key and the hybrid scheme distributes a discrete key. A
loss limit, in the sense that the mutual information be-
tween Alice and Bob IAB cannot be greater than the
Shannon information of an eavesdropper (Eve) IE, is
given for an all-continuous scheme [6], and it is shown
that this limitation can be removed by introducing a
postselection process for a hybrid scheme [7–9]. The
existence of loss limit is an open question.

The reliable security measure for discrete quantum
cryptographic schemes against individual attacks is the
secure key gain G which ensures that IE can be arbitrarily
small in the long key limit if G is positive [10,11]. The
question is how high G can be for a given loss or trans-
mission distance in realistic conditions. The estimations
are given for Bennett-Brassard-84 protocol [11], en-
tangled photon protocol [12], and Bennett-92 protocol
[13]. The estimation of G for continuous schemes, if
possible, is important as a comparison with discrete
schemes. At least, the framework [14,15] can be adapted
to hybrid schemes.

For these discrete schemes, the experimental imperfec-
tions are mostly determined by observed bit error rate and
dark count rate of single photon detectors [11–13]. In
continuous-variable schemes, the experimental imperfec-
tions appear as the change of quadrature distributions.
Experimentally, quadrature measurement is performed
slightly above the standard quantum limit and observed
quadrature distribution has additional Gaussian noise
upon the minimum uncertainty Gaussian wave packet
[8]. Thus, the security analysis including experimental
imperfections seems to become qualitatively different
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In our previous work [9], we estimated G of a hybrid-
type scheme applying a postselection [8] for a given loss,
provided Eve performs quadrature measurement for the
lost part of the signal. In this case, it is shown that G can
be positive if the loss is less than unity by setting a large
postselection threshold.

In this Letter, first we estimate G of this scheme [8] for
a given loss against an individual beam splitting attack
[7]; that is, Eve can use a positive operator valued mea-
sure (POVM) on the individual split signal independently.
It is shown that G can be positive by setting a large
threshold and there is no loss limit. Second, we provide
two concrete examples of eavesdropping attack which
causes excess Gaussian noise. The first one is treated as
an extension of individual beam splitting attack and it
also shows no loss limit. The second one is an intercept-
resend attack. It imposes a practical loss limit on every
coherent state scheme.

The protocol we study here is a four state protocol
using phase modulation of weak coherent pulse and bal-
anced homodyne detection applying a postselection pro-
cess [8,9]. Alice randomly chooses one of the four
coherent states j

���
n

p
eim
=2i with the pulse intensity (the

mean photon number per pulse) n > 0, m � 0; 1; 2; 3 and
sends it to Bob. Then Bob randomly measures one of the
two quadratures x̂xk with k � 1; 2 and �x̂x1; x̂x2� �

i
2 . After

the transmission of a large number of pulses, Alice trans-
mits the parity of m to Bob through a classical channel.
For the pulses m� k � �1, Bob sets a threshold x0	
 0�
and constructs his bit sequence by the following decision:

	bit value� �
�
1 if x > x0
0 if x <�x0;

(1)

where x is the result of Bob’s measurement. This is a
postselection process and the advantage is that Bob can
obtain an arbitrarily small bit error rate by setting a
larger threshold in the absence of obvious eavesdropping
[9]. For simplicity, hereafter we set k � 1. This does not
2004 The American Physical Society 117901-1
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The lossy channel is modeled by a beam splitter (see
Fig. 1), and the split signal is assumed to be received by
Eve. Bob receives the signal j

�������
�n

p
eim
=2i, where �	0<

� � 1� is the parameter characterizing the loss 1� �. If
m� k � �1, the probability that Bob’s quadrature mea-
surement results x is given by [9]
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1
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where hx1j denotes the eigenbra of x̂x1 and 	
x�2 � 1
4 is the

quadrature variance of coherent state. Using this proba-
bility, Bob’s Shannon information gain per pulse is given
by [15]

1

2

X
jxj>x0

Prob	x�iAB	x; �n�; (3)

where the factor 1=2 is the probability that the basis is
correct; i.e., Bob’s choice of k satisfies m� k � �1, and

iAB	x; n� � 1� Prob	
���
n
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is the Shannon information gain when x is triggered,
where
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FIG. 1. In a lossy channel, the input coherent state j�i is
simply amplitude damped as j

����
�

p
�i by the loss 1� �. In the

beam splitting attack, Eve replaces the lossy transmission path
with her lossless one and uses a beam splitter (BS) with the
reflectivity 1� �, which corresponds to the original trans-
mission loss. Then Eve can obtain the lost part of the signal
j

�������������
1� �

p
�i without causing any further disturbance to Bob’s

signal.
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is the conditional probability that the state is j
���
n

p
i when

the measurement results x1.
Now we evaluate the potentially leaked information to

Eve in the sense of Rényi [16]. For the individual attacks,
useful forms of Rényi information are known [14,15,17].
According to [15], for any binary pure states signal
fj��i; j��ig, the maximum Rényi information gain is
given by

IRopt � log2	2� jh��j��ij
2�: (6)

Since Eve can perform her measurement after she
learns the parity of m, the problem is to find the maxi-
mum value of the Rényi information using a POVM
on the binary signal fj

�������������������
	1� ��n

p
i; j �

�������������������
	1� ��n

p
ig.

Thus, substituting j��i � j �
�������������������
	1� ��n

p
i into Eq. (6),

we obtain

IRopt	n; �� � log2

�
2� exp

�
�
	1� ��n

	
x�2

	�
: (7)

Using expressions (3) and (7), we obtain the secure key
gain (with ideal error correction) [9,11]:

G	x0; n; �� �
1

2

X
jxj>x0

Prob	x��iAB	x; �n� � IRopt	n; ���

�
X
x>x0

Prob	x��iAB	x; �n� � IRopt	n; ���; (8)

where in the last expression we have used the properties
Prob	x� � Prob	�x� and iAB	x; n� � iAB	�x; n�. Thus, we
will discuss taking x 
 0 in what follows.

Since, for given positive n, 0 � IRopt < 1 and iAB is a
monotonically increasing function of x 
 0 with
limx!1iAB � 1, we can find ~xx which satisfies

iAB	~xx; �n� � IRopt	n; �� 
 0: (9)

From this inequality and expression (8) with Prob	x� 
 0,
the choice of the threshold x0 
 ~xx gives G > 0.

To obtain the maximum gain for a given �, n and x0
should be optimized simultaneously. A result of simulta-
neous optimization is shown in Fig. 2.

Thus far, we have considered only the amplitude
damping of coherent states as experimental imperfec-
tions. Practically, the noisy channel transforms an input
coherent state into a mixture of coherent states. In the
experiment [8], the observed quadrature distributions are
Gaussian. Therefore we consider the channel which
makes the Gaussian mixture:

j�i !
�



Z
e��j�j2 j���ih���jd2�; � > 0: (10)

In this case, the observed phenomena for Bob is homoge-
neous broadening of the quadrature distributions.

If the observed quadrature distribution is Gaussian,
Bob’s information gain can be calculated by replacing
	
x�2 with the observed quadrature variance 	
xobs�2 in
117901-2
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FIG. 2. The secure key gain G is shown for given (a) loss
1� � and (b) distance in the absence of additional noise. The
solid lines denote G against a beam splitting attack where Eve
performs quadrature measurement [9] and dashed lines de-
note G against individual beam splitting attack. Both thresh-
old x0 and pulse intensity n are optimized to maximize G. The
distance is determined by using the optical fiber loss coefficient
0:2 dB=km for 1:55 �m wavelength.

FIG. 3. Eve broadens Bob’s observed quadrature variance
	
xobs�2 by combining a beam splitter (BS) and a phase-
insensitive amplifier (AMP).
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Eqs. (2) and (5). However, the estimation of leaked in-
formation is not straightforward. In the beam splitting
attack, IR is independent of x and thus postselection is
advantageous. In general, Eve’s operation makes a cor-
relation between Bob’s measurement result x and the
state Eve receives. In such a case, IR depends on x, and
thus the postselection is not necessarily advantageous. In
the next paragraph, we provide an extension of individual
beam splitting attack which preserves the postselection
advantage.

A lower bound of Rényi information for a given loss
and Gaussian noise is given by considering the following
attack: Eve performs a beam splitting with the reflectiv-
ity 1�� and then she operates a phase-insensitive am-
plifier [18] with the amplifier gain g 
 1 (see Fig. 3). �
and g are determined by the observed variance and mean
photon number:

	
xobs�2 � 	2g� 1�	
x�2; (11)
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g�n � �n: (12)

This implies � � f2	
x�2=�	
xobs�
2 � 	
x�2�g� � �

g and
Eve obtains a more intense signal than that from an
individual beam splitting attack. By defining the effective
loss 1��, the leaked information is estimated as the in-
dividual beam splitting attack: IRL	n; �; g� � IRopt	n; �=g�.
In this case, we can still achieve G > 0 since 0< IRL < 1
and iAB ! 1	x ! 1�. Therefore transmission distance is
unlimited by this attack.

A distance bound in the presence of excess Gaussian
noise is given by considering the following intercept-
resend attack: Eve performs simultaneous measure-
ment using a 50:50 beam splitter followed by two
homodyne detectors and resends a coherent state whose
amplitude is

���
2

p
times larger than the measured value

of the simultaneous measurement. This operation is equal
to continuous-variable quantum teleportation without
Einstein-Podolsky-Rosen correlation [19], so we refer to
it as classical teleportation (CT). The effect of CT is
summarized as the expression (10) with � � 1:

j�i !
1




Z
e�j�j2 j�� �ih�� �j d2�: (13)

The quadrature variance becomes 3 times larger than
	
x�2 (2 is from simultaneous measurement and 1 is the
variance of the resending coherent state). In each resend-
ing operation, Eve knows the state Bob receives and Bob
has no information advantage, i.e., IAB < IE. This con-
dition is true for any coherent state scheme because CT is
performed for every coherent state equally. Thus, coher-
ent state schemes are no longer secure if the observed
excess noise is equal to 2	
x�2 or larger.

If we introduce loss after CT, the total signal trans-
formation is

j�i !
1


�

Z
e�	j�j2=��j

����
�

p
�� �ih

����
�

p
�� �j d2�: (14)

The observed variance is 	
xobs�
2 � 	1� 2��	
x�2. The

point is that the observed excess noise 2�	
x�2 becomes
arbitrarily small for high loss. Therefore there exists a
loss limit in the presence of any finite excess noise. By
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FIG. 4. A distance bound is shown as a function of normal-
ized excess noise � � 	
xobs�

2=	
x�2 � 1. Out of the gray
region � 
 2�, secure key distribution is impossible. The
distance is determined by using the optical fiber loss coeffi-
cient 0:2 dB=km for 1:55 �m wavelength.
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defining the normalized excess noise � � 	
xobs�2=
	
x�2 � 1, a necessary condition of secure key distribu-
tion is given by � < 2� (see Fig. 4). This limitation is
practical since realization of CT is possible within today’s
technology.

In conclusion, we have investigated the security of a
continuous-variable quantum cryptographic scheme ap-
plying a postselection against individual beam splitting
attack and an extension of this attack in the presence of
excess Gaussian noise. It is shown that the secure key gain
can be positive by setting a large postselection threshold
and in this sense the transmission distance is unlimited as
long as these attacks are concerned. We have also found a
loss limit by a combination of a realistic intercept-resend
attack and the loss mechanism which reduces excess noise
on quadrature distributions. The limitation is imposed not
only on the postselection scheme but on every coherent
state continuous-variable scheme.
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