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We develop a lattice mean field theory for ferromagnetic ordering in diluted magnetic semiconduc-
tors by taking into account the spatial fluctuations associated with random disorder in the magnetic
impurity locations and the finite mean free path associated with low carrier mobilities. Assuming a
carrier-mediated indirect RKKY exchange interaction among the magnetic impurities, we find sub-
stantial deviation from the extensively used continuum Zener model Weiss mean field predictions. Our
theory allows accurate analytic predictions for Tc and provides simple explanations for a number of
observed anomalies, including the non-Brillouin function magnetization curves, the suppressed low-
temperature magnetization saturation, and the dependence of Tc on conductivity.
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behavior of the system on the carrier transport proper- ij ij
Much of our current understanding of ferromagnetism
in diluted magnetic semiconductors (DMS), most notably
in the extensively studied molecular beam epitaxy grown
Mn-doped Ga1�xMnxAs (with the Mn doping level x �
0:01–0:1 system), has been based on a simple continuum
Weiss mean field theory (MFT) approximation [1] of the
Zener model for the local (p-d) exchange coupling be-
tween the impurity magnetic moment S � 5=2 d levels of
Mn and the itinerant carrier spin polarization, s � 3=2
holes of p character in the valence band of GaAs. Spatial
fluctuations associated with the random locations of Mn
local moments are neglected in this continuum Weiss
mean field theory. There is no theoretical rationale, except
simplicity, underlying the neglect of the strong quenched
spatial disorder due to the random magnetic impurity
locations. Indeed, there have been several Monte Carlo
simulations [2–8] attempting to include spatial disorder
effects in the theory. These simulations as well as a
recently developed percolation theory [9,10] have explic-
itly demonstrated the manifest importance of quenched
disorder in DMS ferromagnetism, at least for the local-
ized insulating DMS systems. There are also strong ex-
perimental signatures for the important interplay
between disorder and magnetism in DMS materials [11].

In this Letter, we develop the first systematic theory for
DMS ferromagnetism explicitly including spatial disorder
effects in the Zener-RKKY mean field model [1,10] ap-
propriate for the metallic DMS systems. Our framework
is a thermal mean field theory, a reasonable approxima-
tion to make due to the large coordination number (12) of
the zinc-blende lattice and the long-range of the indirect
exchange interaction in the metallic situation. Our theory
is explicitly constructed for metallic DMS systems with
itinerant carriers (since we assume the carrier-mediated
effective Mn-Mn indirect magnetic exchange interaction
to be of the RKKY form), but the inclusion of a finite
carrier mean free path in the theory allows us to make
specific predictions about the dependence of the magnetic
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ties. An alternative (and more accurate statement) is that
we include an exponential cutoff in the range of the
RKKY interaction, allowing us to obtain results while
smoothly interpolating between long-range and short-
range magnetic interactions simply by varying the cutoff
parameter r0, which should be related to the ‘‘localization
length’’ of the DMS carriers. We also include a direct
nearest-neighbor Mn-Mn antiferromagnetic exchange in-
teraction in our theory, which takes on significance for
larger Mn concentrations or in the presence of Mn inter-
stitial defects. An essential feature of our model is the
fully discrete nature of our disordered mean field theory
on a lattice; the discreteness associated with the specific
lattice structure introduces unique features to the RKKY
exchange interaction which are not caught in the corre-
sponding continuum approximation. Our model, although
conceptually simple, is actually quite rich as it depends
on five independent physical parameters of the DMS
system: the carrier-induced Mn-Mn RKKY coupling
(J0), the direct Mn-Mn (nearest-neighbor) antiferromag-
netic exchange coupling (JAFM), the effective local mo-
ment density (ni), the free carrier density (nc), and the
exponential cutoff length scale (r0) directly related to the
carrier mean free path (localization length). In principle,
the randomness in the Mn locations on the lattice could
also be parameterized, particularly if clustering (or other
spatial correlations) of Mn impurities is important during
GaMnAs growth. We neglect, at this stage, any such
correlation in Mn spatial locations (since no independent
experimental information on the nature of quenched dis-
order is available), assuming the Mn atoms to be uni-
formly, randomly distributed in the zinc-blende GaAs
lattice at the Ga substitutional sites.

Our effective Hamiltonian describes the Mn-Mn mag-
netic interaction between classical Heisenberg spins Si on
a lattice:

H �
X
JRKKYij Si � Sj �

X
JAFMij Si � Sj; (1)
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where Si is the ith Mn local moment of spin 5=2; JAFMij is
the direct antiferromagnetic exchange interaction be-
tween nearest-neighbor Mn spins, i.e., JAFMij � 0, unless
i and j are nearest neighbors. The first term in the effec-
tive Hamiltonian, the carrier-mediated RKKY indirect
exchange interaction responsible for producing DMS fer-
romagnetism, describes the magnetic interaction between
the Mn local moments induced by the free carrier spin
polarization. This indirect Mn-Mn exchange interaction
arises from [1,10] the local Zener coupling (or the so-
called p-d hybridization) between the holes and the Mn d
levels, which then leads to the effective Mn-Mn RKKY
interaction:

JRKKYij � J0r�4�sin�2kFr	 � 2kFr cos�2kFr	
 (2)

where r � jRi �Rjj is the spatial separation between the
magnetically coupled Mn atoms; kF / n1=3c is the Fermi
wave vector corresponding to the carrier density nc, and
the RKKY coupling strength J0�> 0	, taken as a parame-
ter in our theory, is related to the local Zener coupling Jpd
between the Mn local moments and the hole spins, J0 /
mJ2pd, where m is the hole effective mass. Note that for
low carrier densities the RKKY exchange interaction is
mostly ferromagnetic except for large Mn-Mn separation
(r 
 k�1

F ), and therefore, as long as nc � ni, where ni is
the active density of Mn local moments (i.e., typical r /
n�1=3
i ), the frustration effects associated with the oscil-

latory nature of RKKY exchange interaction are unim-
portant in the problem, distinguishing the DMS systems
from random dilute metallic magnetic alloy spin glass
systems (e.g., Cu-Mn), which are typically in the opposite
limit of nc � ni. It is important to emphasize that a
continuum Weiss mean field theory (which necessarily
neglects all spatial fluctuation effects by averaging over
the Mn positions), blindly applied to the Mn-Mn RKKY
interaction, as was already done [12] a long time ago (and
revived recently [1] in the context of DMS systems),
always yields long-range ferromagnetic ordering of the
Mn local moments for all values of nc and ni, with a mean
field ferromagnetic transition temperature TMFT

c /
J0nin

1=3
c . This is obviously incorrect for larger values of

nc where ferromagnetism would eventually disappear
[13] in a lattice model.

The Hamiltonian of Eq. (1) can be rewritten as a
generalized random exchange Heisenberg model for ran-
dom Mn spins on a disordered GaAs lattice H �P
ijJij�r	Si � Sj [where Jij � JRKKYij � JAFMij � J�r	] with

the sum over i,j extending over (random) magnetic im-
purity locations in the GaAs lattice. For notational brev-
ity, we subsume the short-ranged antiferromagnetic
interaction JAFMij in the definition of J�r	.

We use a lattice mean field theory and consider each
impurity spin Si to be immersed in an effective magnetic

field, B�i	
eff �

1
g�B

�JihhS
zii	, where Ji �

P
jJij is the sum of

all couplings to the impurities surrounding the site i,
hhSzii is the thermal and site-averaged polarization, and
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g is the g factor corresponding to the impurity. Given B�i	
eff ,

the thermally averaged spin polarization hSzi i is (kB � 1)
hSzi i � SBS�g�BB

�i	
eff=T
, where BS is the usual mean field

thermal Brillouin function. We retain the exact site de-
pendence in Ji, thereby taking into account impurity
disorder which subjects different Mn spins to different
couplings depending on the local impurity configurations
as determined by the random Mn locations on the GaAs
lattice. hSzi i is numerically calculated for a specific impu-
rity distribution. To determine hhSzii, the polarization
averaged over all impurities, we integrate over all pos-
sible realizations of disorder, obtaining

hhSzii �
Z
P�J	SBS�hhS

ziiJ=T	dJ; (3)

where P�J	 is the probability distribution of J. One then
calculates hhSzii self-consistently from Eq. (3). P�J	 is
determined a priori via Monte Carlo sampling.

In our lattice mean field theory, the ferromagnetic
transition temperature Tc is determined by the site-
averaged exchange coupling and is given by

Tc �
35

12
x
X1
i�1

NiJ�ri	; (4)

where Ni and ri are the numbers and distances of the ith
nearest neighbors, respectively. We express ri and the
remaining two length scales r0; �2kF	�1 in units of the
lattice unit cell length. The continuum limit is reached for
r0; �2kF	�1 � 1 with

Tcont
c �

140�x
3

Z 1

0
r2J�r	 � TMFT

c f�2kFr0	; (5)

where TMFT
c � �280�J0x=3	�3�

2nc=2	
1=3 / J0xn

1=3
c is the

continuum MFT value for Tc, which has been employed
[1] extensively in the recent DMS literature (note that S �
5=2 here). The factor f�2kFr0	 � 1� tan�1�2kFr0	=
�2kFr0	 takes into account the exponential cutoff on the
magnetic interaction. We recover the continuum Weiss
MFT result in Eq. (5) when 2kFr0 � 1, i.e., in the
strongly metallic regime. However, when r0 becomes
comparable to the length scale �2kF	

�1; f�x	 �
1
3 x

2 � 1
5 x

4 � � � , the RKKY interaction is effectively sup-
pressed and Tc is substantially lower than TMFT

c , even in
the continuum approximation. To obtain an accurate for-
mula for Tc, it is necessary also to take into account the
antiferromagnetic interaction between Mn impurities and
to correct for the differences between the continuum
approximation of Eq. (5) and the discrete lattice sum of
Eq. (4). In the same way that an integral and a discrete
approximation to that integral differ by a power series in
the step size, the difference between the continuum and
discrete formula described above can be written as a
series in kF. With these improvements, one finds as a
reasonable large r0 approximation for Tc
117201-2
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FIG. 1. (a) Tc relative to continuum Weiss TMFT
c for carrier

mean free path r0 � 10, 2, 0.9, and 0.5. Solid curves are plotted
with the antiferromagnetic interaction taken into account,
while dashed curves depict Tc with antiferromagnetism sup-
pressed. (b) Magnetization profiles corresponding to r0 � 10
(x � 0:05), r0 � 0:9 (x � 0:01), r0 � 0:5 (x � 0:015); nc=ni �
0:3 for all r0 values. Below, we show the exchange coupling
distributions P�J	 corresponding to the magnetization curves.
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FIG. 2. Magnetization phase diagram: contour plots of the
concavity parameter  as a function of Mn concentration x and
nc=ni for two values of carrier mean free path (a) r0 � 0:5 and
(b) r0 � 2, where nc (ni) are the carrier (local moment)
densities, and x is the Mn doping level. The  � 0 contour
divides the concave/convex phases in (a).
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�
f�2kFr0	�

35

2
xJ�1=

���
2

p
	; (6)

where �2 � �0:733 256, �4 � 6:2594� 10�2, �6 �
2:89� 10�3, �8 � 3:7� 10�4, �1 � 0:1633, �2 �
0:4284, �3 � 0:5584, �4 � 0:1176. Tc in Eq. (6) is cor-
rect to better than one part in 106 for large r0 (as com-
pared with our numerical calculations). Accuracy
diminishes as r0 is made smaller, though the formula
given in Eq. (6) is still correct to within 1% for r0 � 1.
One can also arrive at a formula to cover the small r0
regime. In this case, Tc can be expressed as the sum of
two terms

Tc �
35

12kB
x
�
6J�1=

���
2

p
	 � 16�

Z 1

ra

J�r	r2dr
�
; (7)

where the first term in brackets is the exact nearest-
neighbor contribution while the second term contains
the remaining couplings calculated in the continuum
limit, and the optimal choice for ra is 0.953. For r0 � 1
the relative error for Tc from Eq. (7) is less than 2%.
Evidently, the first term (accounting for the effect of
impurities on neighboring sites) dominates as r0 becomes
comparable to the size of the GaAs unit cell. In this
regime, the antiferromagnetic coupling plays an impor-
tant role for small r0, suppressing Tc substantially de-
pending on the precise value of JAFM.

In Fig. 1(a) we show our direct numerical calculation of
Tc as a function of the carrier density nc (for fixed Mn
doping level x) for four different values of the carrier
mean free path varying from strongly metallic (r0 � 10)
to ‘‘almost’’ insulating (r0 � 0:5). Clearly, for most
choices of nc and r0, TMFT

c is a poor approximation for
Tc in the disordered lattice system. We emphasize that the
strong dependence of our calculated Tc on the system
conductivity (through r0) is consistent with GaMnAs
experimental results where increasing conductivity is
found to enhance Tc [14]. In Fig. 1(b) we show our
calculated spontaneous magnetization M�T	 results,
which depend on the full exchange distribution P�J	
shown in the lower part of Fig. 1(b). The M�T	 profile
(convex, concave, or linear) depends on whether the
system is in the insulating (small r0, small nc) or metallic
(large r0, large nc) regime. Concavity in M�T	 is a sig-
nature of an insulating system, while convex profiles
appear deep in the metallic regime [10]. For intermediate
impurity densities and mean free paths, it is possible to
obtain a linear magnetization curve. Within the frame-
work of our model, we are able to span both the localized
and metallic regimes by having very small and large
values of r0 respectively, as can be seen in Fig. 1(b).

There is a strong correlation between the degree of
concavity in M�T	 and the extent to which the coupling
probability distribution P�J	 has a strong weight near
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zero interaction strength and a multimodal profile. The
multimodal P�J	 in general leads to a concave M�T	. A
reasonable measure of the concavity is  �

R
t2
t1M

00�T	dT,
or the difference in the slopes of M�T	. The sign of  
indicates whether M�T	 is convex (negative  ), concave
(positive  ), or linear (if  � 0). The temperatures t1 and
t2 are chosen to capture an intermediate temperature
range, neither very close to Tc nor to zero.We choose t1 �
0:1tc and t2 � 0:7tc. In Fig. 2 we give results for our
‘‘magnetization phase diagram’’ where the regimes of
convex/concave magnetization behavior are depicted on
the nc=ni � x two dimensional plots. Contour plots in
Fig. 2 show in a concise way important trends; one sees
117201-3
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FIG. 3. Suppression of the saturation magnetization MS due
to the oscillatory nature of the RKKY exchange interaction.
Inset (a) shows the suppression by direct AFM coupling to Mn
dopants in interstitial sites as a function of the fraction of
interstitial impurities (y) with nc=ni held fixed. In inset (b), MS
is given as a function of y with the carrier density modeled as
nc=ni � �1� 3y	.
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very clearly the transition from some concavity in M�T	
to convex M�T	 behavior with increasing r0. Raising the
magnetic impurity density also tends to make the mag-
netization profile more convex.

We have also calculated the saturation magnetiza-
tion MS � M�T ! 0	 using our theory, finding that con-
sistent with experimental observations [14] MS=M0

(where M0 is the magnetization with all of the Mn s
pins fully aligned) could indeed be less than unity par-
ticularly for larger values of relative carrier density
(nc=ni) and/or for more metallic systems (i.e., larger
values of r0). The main suppression mechanisms are
direct M coupling between nearest-neighbor Mn-Mn in-
teraction (increasing with JAFM and x) and the oscillatory
nature of the RKKYexchange coupling at large values of
kFr (increasing with r0 and nc=ni). The effect of the
antiferromagnetic part of the RKKY coupling can be
seen in Fig. 3. The broken line, corresponding to r0 � 1
and x � 0:01, shows less suppression than the solid
r0 � 5, x � 0:05 curve, since larger r0 correspond to a
longer ranged RKKY coupling, thereby increasing the
number of spins interacting antiferromagnetically; a
higher doping fraction, x � 0:05, means a greater number
of impurities involved in the AFM coupling. Both of the
MS curves decrease monotonically with nc=ni. Inset (a)
of Fig. 3 shows the effect of increasing the fraction of Mn
atoms in interstitial sites, y with nc=ni fixed. In addition
to interacting with the Mn in Ga sites via a strong direct
AFM exchange, the interstitial impurities do not contrib-
ute to the overall magnetization, adding to the suppres-
sion of MS. The contribution of the spin-3=2 holes (not
included in the results of Fig. 3), whose polarization is
opposite that of the impurities, makes the suppression
of MS even more significant; the total saturation magne-
tization is Mtotal

S � MMn
S �1� �gh=gMn	�nc=ni	�hsi=hSi	
,

where gh and gMn are the g factors for the holes and Mn
ions, respectively. In inset (b), we take into account the
fact that the Mn interstitial dopants, being electron do-
nors, will reduce the hole density. In this simple model for
compensation, we assume that each Ga-substituted Mn
absorbs exactly one electron, contributing a hole, while
each interstitial Mn donates exactly two electrons,
eliminating two carriers. Since interstitial Mn each neu-
tralize two carriers, one has for the carrier density
nc=ni � �1� 3y	. Our explanation for the lack of full
saturation is manifestly extrinsic, i.e., subject to variation
from experiment to experiment depending on the Mn
interstitial density in the sample; one should be able to
improve MS by appropriately annealing away the Mn
interstitial density.

We have developed a disordered lattice mean field
theory for DMS ferromagnetism that incorporates spatial
fluctuations associated with random lattice locations of
the impurity moments, the finite carrier mean free path,
and the Mn-Mn nearest-neighbor antiferromagnetic cou-
pling. We calculate Tc and magnetization curves for
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Ga1�xMnxAs ferromagnetic semiconductors, finding that
all magnetic properties, including Tc, depart significantly
from the predictions of the extensively used continuum
Weiss mean field theory. A particularly salient feature of
our results is the strong theoretical correlation between Tc
and the metallicity of the system (i.e., r0) as observed
experimentally. We establish that the observed lack of
DMS saturation magnetization may be entirely extrinsic,
arising from the Mn interstitial defects. The most impor-
tant, essential approximation of our model is the assump-
tion of an effective RKKY form for the carrier-mediated
indirect exchange interaction between the impurity local
moments, which is supported by recent numerical calcu-
lations explicitly establishing [15] the validity of RKKY
coupling in disordered semiconductors.
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