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A Fokker-Planck equation is used to model the coarsening of surface nanostructure arrays.
Metastable states are identified which are associated with a narrow size distribution and a coverage
dependent mean island size. This is a general feature linked to nanostructures which, as a function of
island size, are associated with a minimum in formation energy per atom and a positive chemical
potential gradient. This has important implications for the self-organization of quantum dots.
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The spontaneous formation of nanoscale structures on
surfaces using thin film deposition techniques, such as
molecular beam epitaxy, offers an attractive route for the
self-assembly of three-dimensional semiconductor is-
lands or quantum dots [1-5]. These structures have im-
portant applications in the design of novel devices such as
quantum dot lasers [6]. However, size uniformity is a
critical issue for potential device applications which has
led to significant efforts to understand the kinetic [7—20]
and thermodynamic [21-27] factors governing the coars-
ening of quantum dot arrays.

In this Letter we consider the coarsening of surface
nanostructures which, as function of island size, are
associated with a minimum in the island formation en-
ergy per atom. In principle, these are particularly attrac-
tive candidates for attaining narrow size distributions
because a thermodynamically favored size exists [21—
24]. Such nanostructures include strained 2D islands
[21,22] as well as 3D islands with strain renormalized
surface energy [23,24]. The new feature identified in this
work is the existence of dynamic metastable states which
naturally arise as a competition between chemical poten-
tial driven drift and thermal diffusive broadening of the
island size distribution. Most importantly, the size dis-
tribution function approaches a Gaussian form with a
coverage dependent mean island size, allowing the fab-
rication of uniformly sized arrays with size selectivity.

To illustrate the concepts of tunable metastability, we
focus on a mathematically tractable system consisting of
2D strained islands where it is generally accepted that a
thermodynamically favored size exists [21,22]. We em-
phasize, however, that our qualitative conclusions regard-
ing metastability are quite general and depend only on
individual nanostructures possessing a minimum (i.e., a
positive gradient) in chemical potential as a function of
island size.
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For a dilute array of islands, the energy of formation of
a single island consisting of N atoms is given by

E(N) = —WN + C;+/N — C,Z/NIn(/N). (1)

The first term is the binding energy between the adsorbate
atoms, and the second term is the island edge energy due
to broken chemical bonds. The third term is the elastic
relaxation energy associated with the discontinuity of the
surface stress tensor at the island boundaries which re-
sults in elastic relaxation for heteroepitaxial systems. The
energy per atom, £(N) = E(N)/N, is plotted in Fig. 1(a).
It always has a minimum at the optimum size N, =
exp[2(C;/C, + 1)] at which the energy per atom is lower
than in a fully ripened island (N — o0) by the quantity
gy = C2N0_1/2. The chemical potential of the island is
given by

uiy) = £, @)
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FIG. 1. (a) Energy per atom &(N) and (b) chemical potential
u(N) plotted as a function of N/N, for W =0 and C,/C, =
3.27. Minima in &(N) and w(N) occur at N =N, and N =
N; = 0.14N,, respectively.
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which is displayed in Fig. 1(b) and has a minimum at
Nl = N0/€2 =~ 014N0

We will describe the evolution of the 2D strained island
nanostructure array by a Fokker-Planck equation which
is derived as an approximation of the kinetic Becker-
Doring model for the aggregation of particles [28]. It is
a standard approach used to discuss time-dependent nu-
cleation [29] and is also directly applicable to studying
the time evolution of an array of nanoclusters [30]. If
f(z, N) is the island size distribution function such that
f(z, N)dN specifies the number of islands per unit area
containing atoms between N and N + dN at time ¢, then
the appropriate Fokker-Planck equation governing the
time evolution of the islands is

0 d

—f(t, N) = ——J(t,N), 3

L f(0N) = =50 N) 3
where the flux in the configurational space of island size is

7 — p(N)

J(tN) = a)(N)[ o

d

6N =~ S fem ] @
Here we have considered the standard case where the
kinetics are limited by attachment (detachment) pro-
cesses to (from) the island perimeter [17,18] and the
kinetic factor w(N) = N'/? for appropriate scaling of
the units of time. The first term in Eq. (4) is convention-
ally referred to as the drift contribution and is associated
with a drift velocity,

&)

u(t, N) = w(N)[L'u(N)}

kyT

The second term is known as the diffusion contribution.
The time-dependent, mean-field chemical potential & is
determined from the quasi-steady-state requirement that
the island flux J(z, N) integrated over all islands is equal
to the deposition flux ®;

f “ J(t, N)dN = ®. 6)
0

The evolution of f(z, N) is obtained by solving Eq. (3)
numerically, using the methods outlined in [7,31]. The
mean-field chemical potential 7 is evaluated after each
time increment using Eq. (6).

We first consider a Gaussian 2D island distribution
centered on an island size located significantly below
the minimum in w(N) at N; and employ our model to
calculate the initial evolution of the distribution during
ripening (zero flux). We measure the temperature 7' with
respect to the temperature ® = C,./N,/kp correspond-
ing to the energy of an island containing N, atoms of
energy per atom g, [32]. In all calculations we use T/® =
1073 and C,/C, = 3.27, giving N, = 5.1 X 103. The evo-
Iution shown in Fig. 2(a) is driven by the negative gra-
dient in w(N) and, as such, is similar to conventional
capillarity-driven ripening, in which the chemical poten-
tial decreases monotonically. Small islands with a chemi-
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FIG. 2. (a) Early and (b) late evolution of f(z, N) with time

(scaled units) for a Gaussian initial distribution located
below N,;. The solid arrows indicate the chemical potential
minimum at Nj.

cal potential above & shrink [according to Eq. (5)] and
large islands, with a chemical potential below 7, grow.
The island distribution therefore broadens and evolves to
larger volumes as shown.

Figure 2(b) shows the same island distribution evolved
to later times. The distribution approaches and, surpris-
ingly, passes slightly above N,. By t =5 X 10°, essen-
tially the whole distribution lies above N;. This contrasts
with the conventional view that the evolution stops at the
chemical potential minimum [16,33]. Note that passing
through the minimum is a consequence of the drift term
and occurs even with the diffusion term set to zero [34].
Therefore, the minimum in chemical potential does not
formally determine an optimum island size, even in the
drift dominated regime. Beyond N, the distribution nar-
rows and the subsequent evolution is considerably slower
as the drift and diffusion terms compete in Eq. (4). This
cancellation of terms produces a metastable state which
effectively suppresses the evolution of f(z, N) on experi-
mentally relevant time scales.

The evolution of an island array located above the
minimum in chemical potential exhibits highly unusual
behavior. Consider an initial Gaussian distribution cen-
tered on an island size much greater than N, as shown in
Fig. 3. During ripening, the initial distribution narrows,
almost symmetrically, and stabilizes about the mean
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FIG. 3. Evolution of f(z, N) with time 7 (scaled units) for a
Gaussian initial distribution located above N;. A metastable
state is reached by t = 4 X 10°.

island size. This can be simply explained in terms of the
mean-field chemical potential . In a drift dominated
regime and in the absence of a deposition flux, @ is a
weighted mean of w(N) over f(z, N) [Egs. (4) and (6)].
Since w(N) has a positive gradient in this regime, islands
will undergo inverse ripening; small islands with a chemi-
cal potential below 7 grow and large islands with a
chemical potential above & shrink. Therefore, the drift
term causes the distribution to narrow about the mean
island size. However, the diffusion term in Eq. (4) is
proportional to df(¢z, N)/dN and opposes this narrowing,
favoring a more disordered system. Eventually, the drift
and diffusion terms become very nearly equal in magni-
tude but opposite in sign, resulting in a long-lived tran-
sient state where J(#, N) = 0in Eq. (4) [34]. This dynamic
cancellation of competing effects is the origin of the
observed metastability in Figs. 2(b) and 3.

A striking feature of the metastable distributions
displayed in Figs. 2(b) and 3 is the symmetrical,
Gaussian-like profile of the island size distribution func-
tion. We can investigate this analytically by noting that
the annealed metastable states are associated with a
positive gradient in chemical potential for the range N; <
N < N,. To a good approximation, we may represent the
variation of w(N) as a straight line over the width of the
distribution. Consider, in particular, a metastable state
associated with a mean-field chemical potential @ =
w(N) such that the island chemical potential at size N
can be written as u(N) = (N — N)du/dN + u(N).
Inserting this linear form into Eq. (4) and looking for
steady-state solutions satisfying J = 0 yields a meta-
stable Gaussian function centered on N;

du (N — N)?

fuN) =A4,, exp[—ﬁ%} (7

where A,, is a constant. We have verified that this analyti-
cal form is in excellent agreement with metastable
size distribution functions evaluated numerically using
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Egs. (3)—(6) for a range of temperatures [34]. The
standard deviation of Eq. (7) is given by o=
[kgT/(du/dN)]"/? so that narrower distributions would
be expected for lower temperatures or steeper gradients in
chemical potential. This suggests a means of tuning the
distribution width by varying the temperature or the
misfit stress (via C,).

It is important to emphasize that approximate solutions
of the type given by Eq. (7) are long-lived transient states.
They arise due to the effective cancellation of drift and
diffusion terms in Eq. (3), which are very nearly equal in
magnitude but opposite in sign such that J(z, N) = 0 [34].
Over much longer time scales, the system will presum-
ably evolve to the true equilibrium distribution given
by the Gibbs-Boltzmann formula f.,(N) = exp([&N —
E(N)]/kgT), which is the steady-state solution of Eq. (3)
satisfying J = 0. We note that at equilibrium the entropy
contributions associated with finite temperature can lead
to a significant broadening of the distribution function
and shift the mean island size away from the T = 0 value
at Ny [32].

Metastable states should play a significant role in the
coarsening of all surface nanostructures provided that
positive gradients in chemical potential exist with respect
to island size. Therefore, if material is deposited such that
7 is only slightly enhanced by the deposition flux, the
island size distribution will be dominated by the meta-
stable state at that particular coverage. In regions of
positive chemical potential gradient, the size distribution
can then be tuned to a desired size by depositing material
for the required time. With an appropriate value of o
from Eq. (7), this offers the prospect of narrow size
distributions which do not significantly broaden with
increasing coverage as would be expected in conventional
coarsening.

This “close-to-equilibrium” growth procedure is illus-
trated in Fig. 4 in which we choose a uniform distribution
of islands between N =0 and N = 0.07Ny(<N;) to
mimic the early stages of island nucleation [17]. The
island array is then evolved in the presence of a small
deposition flux which increases the mean-field chemical
potential by about 1%. For times smaller than ¢ = 103, the
deposition has little effect and the evolution is similar to
the zero-deposition case [Fig. 4(a)]. The distribution be-
comes metastable as it passes above N; and further flux
causes the Gaussian-like state to drift to higher volumes
with only a slight broadening of the profile [Fig. 4(b)].

The unusual characteristic of a coverage dependent
mean island size accompanied by a distribution width
which is largely independent of coverage, as exhibited
in Fig. 4, has recently been experimentally observed for
metallic islands [35]. Such islands are thought to possess a
minimum in chemical potential with respect to island
size (i.e., regions of positive gradient) [33], which, as
discussed above, is a necessary condition for the exis-
tence of metastable states. The 3D metallic island forma-
tion energy is relatively complex compared with 2D
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FIG. 4. (a) Early and (b) late evolution of f(¢, N) with time ¢

(scaled units) for a uniform initial distribution located below
N, in the presence of a small deposition flux. The solid arrows
indicate the chemical potential minimum at N;.

islands [33], making a quantitative comparison difficult.
However, the general qualitative behavior displayed in
Fig. 4 is in excellent agreement with the experimental
observations [35,36].
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We note that island coalescence, as considered theoreti-
cally in Ref. [14], is most likely contributing to the
experimental reduction in island density in Ref. [35].
Although this is not included explicitly in our present
analysis it will not alter the major qualitative features
of Fig. 4.
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